Phan 1: Ky thuat Web Server v&i Java

Chwong 1. Téng quan vé Web tién hoa véi méi truong Java...........ccccceveeveeennee. 3
1.1 A Timeline of Java PIatformsccoiiiiiiiiii e 3
1.2 Java Servlet va JSP trong Kién tric J2EEcccovveieieeeesieeeeeesee s, 3
1.3 J2EE API (PhIEBNDAN 5) ..oviiiiiccic ettt 4
1.4 May chu tng dung Java (Java Application SErver)ccccvvvevevieeveeieseennnan, 9
1.5 Cai At MOT tIIONG .eeivvveeiiiee ettt e e e e sta e e e sbe e e e raeeaeees 9

151 IDK/JIRE ..ottt bbb 9
1.5.2 Application SErver TOMCALcceiriririieieee s 9
1.5.3 ECHIPSE. o 10

Chuwong 2. JAVA SEIVIEL.........cov et 12
2.1 MO0 hinh tng dung Web v&i Java Servietcooeveveieieiiieiceeeieiee,s 12
2.2 Hello World Serviet AppliCationcccooveveiieiieeie e 13

2.2.1 Tao project my_Servet Vol ECHPSE........cccovveiieiiiiiiiseeee e 13
2.2.2 DONG GOI MY _SCHVICL ... s 16
2.2.3 Deploy my_servlet I8N TOMCAL SEIVENcccveveiiiiece et 18
2.2.4 Phan tich két qud chay chiong trinh my Serviet............cuwcoeorreeeeeresrseenrene. 19
2.3 CAc ky thuat Xir Iy Servlet..........coooiiiiii e, 19
2.3.1 ServIet 1AM VIEe nAE thE NAO......cv.eeeeeeeeeeeeeeeeeeeeeee st ee e 19
2.3.1.1 The init() MEthOCcoiiiiiece e e 20
2.3.1.2 The Service() MEthOdccooiiiiiiiiee et bbb 20
2.3.1.3 The doGet(), doP0oSt() MEtNOUcooiiiiiiiii i 20
2.3.1.4 The destroy() MEthOC........cooiiiiiiiiee e 21
2.3.2 SErVIEt CONTAINETooiiieeee ettt ee e enes 21
2.3.2.1 CONAINET A G vevveveiveieieiieiiee ettt sttt bttt sttt b et e e 21
2.3.2.2 Kétndi cac phuong thirc Servlet va vai trd ciia CONtAINETcc.cocvveveecvrereecrerennnnn, 23
2.3.3 Trao doi Aif 16U VO CHENE ..o 25
2.3.3.1 FOrM Data......cccoiiiiiiiiiici 25
2.3.3.2 Doc thong tin trong CHent reqUest ..., 26
2.3.3.3 Trathdng tin tir SErVEr V& CHENT........cviieieice e 29
b G G |V 0T] (=SS 33
2.3.4 Quan ly phién 1am VIEC (SESSION)cueuiieiiiieiirieisieesie e 40
2.35 Dieu khién IuONG Xir Y FEQUESEoveveeeeeeeeeeeeeeeeee e 45
2.3.5.1 St dung ReqUESIDISPAICNET........ccoiiiiiiieieieicee e 45
2.3.5.2 Dinh hudng ludng tuw dONG KNI €O 18i......uveeveeeeevereieseiseee e 46
2.3.5.3 ST dung b 10C (FIIEr) c.oveieiiece e 48
2.3.6 Truy Nh@p co SO A NIEU ... 50
2.3.6.1 ChUAN DI MOT IIIONG...v.veeveveeseseesesesesesessss st essss st es sttt snseees 50
2.3.6.2 SErVIet DatabDaSEACCESScceeieierterterte et eeie et sttt sttt sttt se et bbbt ne e e e e nae s 51

Churong 3. ISP ... 54
3.1 T SErvIEt 8N ISP ... 54

3.1.1 Project my_jsp vdi EClipse VA TOMCAL........ccceviiiiiiiieie e 54
3.1.2 SEIVIELHEHO _JSP ...t 54

3.1.3 Vong doi hogt doNg Cla JSP.........cccooiiiiiiiiie e 58

3.2 XU gia0 dI€N VT ISP ..ot 60

321 ISP = HTMLA T ittt 60
3.2.2 Xu dung Directives, Declarations, Scriptlets, and EXpressions.............c.ccc.e..... 60
3.3 Truy nhap dén cac dbi twong cd san (implicit ODJECES).......ccvvvvvererreeererene. 62
3.4 CuStom Tag LIDrary.......cccccveieie e 68
Chuwong 4. Struts - Java Web FrameworK...........cccovviieiieeiesieceee e, 74
8.1 DELVAN A& oo 74
4.2 Model — View — Control (MVC) FrameworK...........cccccvvvereeniiiienieieceeneenn, 75
4.3 CAU hInh MOT tIUONG covvvvverereireiseiie et 76
4.4 Hello WOrld VOI STHULS.....cc.ooiiiiiiieeee e 76
441 Xay dung giao dign VOT JSP:ccciiiiiiiiiiciee e 76
442 Kétndi céc file giao dién theo logic ciia ting dung:c..eveceeeveeveeeeerereeieeiens 77
4.4.3 Tao Controller class HElOWOrTAACLIONcocvviiiiiiiieice e 79
4.5 BENIrONG SIIULS ..oovviieie ettt enne e 79
T R 1T £01=] o1 0] TP P TR PRS P PRUTRPRON 80
452 The ValueStack & OGNL.......cccoiiiiiiiiiiie et 81
453 Hello WOrld [AM VIEC thE NAO ...t 82
4.6 Lam VIEC VG SIIUCES ACHION ...occvveiiiiiii ettt 83
4.6.1 What does an aCtion dO?........cccooeeiiiiiiee e 84
4.6.2 Actions encapsulate the Unit Of WOrK............ccoooveieiiiiciiiicccee e 84
4.6.3 Actions provide locus for data transferccocveviieviicccccee e 84
4.6.4 Actions return control string for result routingc.ccoceeeveiiiiinnncee, 85
4.7 Xt ly giao dién: Ul Tags & ReSUIS.......cccccviiiiiieieee e 86
4.7.1 M4t sé cau trac bén trong cia Struts lién quan den VIeWcooovveveeeenn. 87
4.7.1.1 The ActionContext and OGNL.........ccccoriiiiiiiiie et 87
4.7.1.2 The ValueStack: a Virtual ODJECL..........cociiiiiiiii e 89
4.7.2 SEEULS UL TAOS ...vveieeiiiie ettt st e et ns 90
4,73 HiéNn thi RESUIE IEN VIBW.......eeiveeeeee et eee et se et ee et en e ene e ee e eneeens 91
4.8 LaM VIEC VOI INtEICEPLONS . .vvvevieiierieie ettt e 93

4.8.1 WhHY iNtErCePt FEQUESIS?..c.viciieii ettt ettt naenrenne s 93

Chwong 1. Tong quan vé Web tién héa véi méi treong Java

1.1 A Timeline of Java Platforms
From (Williams, 2014) — trang 5

Feb 19, 1997 Dec 11, 2006 Jul 28, 2011
JOK 1.1 Released Java SE & Released Java SE 7 Released

Jan 23, 199 May B, 2000 Sep 30, 2004
JOK 1.0 Released J25E 1.3 Released J2Z5E 5.0 Released 2007-2011
1995 Dec B, 1978 Feb &, 2002 The 5-Year Java Drought Mar 18, 2"?14 4
JDK Beta J25E 1.2 Released | J25E 1.4 Released Java 5E B Releaze
e
—
1 I 1 1 1 1
e o T l
| | | [9 ' i [1 | i
1995 2006-2009 2010-2013 25
Jun 1997 Sep 24,2001
Java EE Drought 81 | Java EE Drought #2
Sendets 1.0 J2EE 1.3 Released ava E= Unoug =va EE Draug
Releasad
Dec 12, 1999 Mowv 11, 2003 May 11, 2004 Diec 10, 2009 Jun 12, 2013
JZEE 1.2 Released JZEE 1.4 Released Java EE 5 Released Java EE & Released Java EE 7 Released
May 1778

Java Professional
Edition {JPE} Announcead

Hinh vé 1: A timeline showing the correlation of the evolution of Java Platform

1.2 Java Servlet va JSP trong Kién tric J2EE

(J2EE tutorial) trang 48.
| .) - - -
Application Client
Machine:
Application Client Web Browser
Container A
I) '%I JSP Web
@ Serviet [- Page |Container
Java EE
Server
Enterprise Enterprise EJB
Bean Bean Container

Hinh vé 2: Vi tri cia Java Servlet va JSP trong kién tric J2EE

1.3 J2EE API (phién ban 5)
(J2EE tutorial) trang 53.

Applet i Web Container EJB Container
Container

| Applet

J2SE

- >

Application Client
Container

Application
Client

Hinh vé 3: J2EE API (phién ban 5)

Enterprise JavaBeansTechnology

An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code
having fields and methods to implement modules of business logic. You can think of an
enterprise bean as a building block that can be used alone or with other enterprise beans to
execute business logic on the Java EE server.

There are two kinds of enterprise beans: session beans and message-driven beans. A
session bean represents a transient conversation with a client. When the client finishes
executing, the session bean and its data are gone. A message-driven bean combines features
of a session bean FIGURE 1-7 Java EE Platform APIs and a message listener, allowing a
business component to receive messages asynchronously. Commonly, these are JavaMessage
Service (JMS) messages.

In Java EE 5, entity beans have been replaced by Java persistence API entities. An
entity represents persistent data stored in one row of a database table. If the client terminates,
or if the server shuts down, the persistence manager ensures that the entity data is saved.

Java ServletTechnology

Java servlet technology lets you define HTTP-specific servlet classes. A servlet class
extends the capabilities of servers that host applications that are accessed by way of a request-
response programming model. Although servlets can respond to any type of request, they are
commonly used to extend the applications hosted by web servers.

JavaServer PagesTechnology

JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into a
text-based document. A JSP page is a text-based document that contains two types of text:

static data (which can be expressed in any text-based format such as HTML, WML, and
XML) and JSP elements, which determine how the page constructs dynamic content.

JavaServer Pages StandardTag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality
common to many JSP applications. Instead of mixing tags from numerous vendors in your
JSP applications, you employ a single, standard set of tags. This standardization allows you to
deploy your applications on any JSP container that supports JSTL and makes it more likely
that the implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating
XML documents, internationalization tags, tags for accessing databases using SQL, and
commonly used functions.

JavaServer Faces

JavaServer Faces technology is a user interface framework for building web
applications. The main components of JavaServer Faces technology are as follows:

= A GUI component framework.

= A flexible model for rendering components in different kinds of HTML or different
markup languages and technologies. A Renderer object generates the markup to render
the component and converts the data stored in a model object to types that can be
represented in a view.

= A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

= Input validation

= Event handling

= Data conversion between model objects and components
= Managed model object creation

= Page navigation configuration

All this functionality is available using standard Java APIs and XML-based
configuration files.

Java Message Service API

The JavaMessage Service (JMS) API is a messaging standard that allows Java EE
application components to create, send, receive, and read messages. It enables distributed
communication that is loosely coupled, reliable, and asynchronous.

JavaTransaction API

The Java Transaction APl (JTA) provides a standard interface for demarcating
transactions. The Java EE architecture provides a default auto commit to handle transaction
commits and rollbacks. An auto commit means that any other applications that are viewing
data will see the updated data after each database read or write operation.However, if your
application performs two separate database access operations that depend on each other, you

will want to use the JTA API to demarcate where the entire transaction, including both
operations, begins, rolls back, and commits.

JavaMail API

Java EE applications use the JavaMail API to send email notifications. The JavaMail
API has two parts: an application-level interface used by the application components to send
mail, and a service provider interface. The Java EE platform includes JavaMail with a service
provider that allows application components to send Internet mail.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is included because JavaMail uses it.
JAF provides standard services to determine the type of an arbitrary piece of data, encapsulate
access to it, discover the operations available on it, and create the appropriate JavaBeans
component to perform those operations.

Java API for XML Processing

The Java API for XML Processing (JAXP), part of the Java SE platform, supports the
processing of XML documents usingDocument ObjectModel (DOM), Simple API for XML
(SAX), and Extensible Stylesheet Language Transformations (XSLT). JAXP enables
applications to parse and transform XML documents independent of a particular XML
processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might
otherwise have naming conflicts.Designed to be flexible, JAXP lets you use any XML-
compliant parser or XSL processor from within your application and supports the W3C
schema. You can find information on the W3C schema at this URL:
http://www.w3.0rg/XML/Schema.

Java API for XMLWeb Services (JAX-WS)

The JAX-WS specification provides support for web services that use the JAXB API
for binding XML data to Java objects. The JAX-WS specification defines client APIs for
accessing web services as well as techniques for implementing web service endpoints. The
Web Services for J2EE specification describes the deployment of JAX-WS-based services
and clients. The EJB and servlet specifications also describe aspects of such deployment. It
must be possible to deploy JAX-WS-based applications using any of these deployment
models.

The JAX-WS specification describes the support for message handlers that can
process message requests and responses. In general, these message handlers execute in the
same container and with the same privileges and execution context as the JAX-WS client or
endpoint component with which they are associated. These message handlers have access to
the same JNDI java:comp/env namespace as their associated component. Custom serializers
and deserializers, if supported, are treated in the same way as message handlers.

Java Architecture for XML Binding (JAXB)

The Java Architecture for XML Binding (JAXB) provides a convenient way to bind
an XML schema to a representation in Java language programs. JAXB can be used
independently or in combination with JAX-WS, where it provides a standard data binding for
web service messages.

All Java EE application client containers, web containers, and EJB containers support
the JAXB API.

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-
WS and JAXR depend. SAAJ enables the production and consumption of messages that
conform to the SOAP 1.1 specification and SOAP with Attachments note.Most developers do
not use the SAAJ API, instead using the higher-level JAX-WS API.

Java API for XML Regqistries

The Java API for XML Registries (JAXR) lets you access business and general-
purpose registries over the web. JAXR supports the ebXML Registry and Repository
standards and the emerging UDDI specifications. By using JAXR, developers can learn a
single API and gain access to both of these important registry technologies.

Additionally, businesses can submit material to be shared and search for material that
others have submitted. Standards groups have developed schemas for particular kinds of
XML documents; two businesses might, for example, agree to use the schema for their
industry’s standard purchase order form. Because the schema is stored in a standard business
registry, both parties can use JAXR to access it.

J2EE Connector Architecture

The J2EE Connector architecture is used by tools vendors and system integrators to
create resource adapters that support access to enterprise information systems that can be
plugged in to any Java EE product. A resource adapter is a software component that allows
Java EE application components to access and interact with the underlying resource manager
of the EIS. Because a resource adapter is specific to its resource manager, typically there is a
different resource adapter for each type of database or enterprise information system.

The J2EE Connector architecture also provides a performance-oriented, secure,
scalable, and message-based transactional integration of Java EE-based web services with
existing EISs that can be either synchronous or asynchronous. Existing applications and EISs
integrated through the J2EE Connector architecture into the Java EE platform can be exposed
as XML-based web services by using JAX-WS and Java EE component models. Thus JAX-
WS and the J2EE Connector architecture are complementary technologies for enterprise
application integration (EAI) and end-to-end business integration.

Java Database Connectivity API

The JavaDatabase Connectivity (JDBC) API lets you invoke SQL commands from
Java programming language methods. You use the JDBC API in an enterprise bean when you

have a session bean access the database. You can also use the JDBC API from a servlet or a
JSP page to access the database directly without going through an enterprise bean.

The JDBC API has two parts: an application-level interface used by the application
components to access a database, and a service provider interface to attach a JDBC driver to
the Java EE platform.

Java Persistence API

The Java Persistence APl is a Java standards-based solution for persistence.
Persistence uses an object-relational mapping approach to bridge the gap between an object
oriented model and a relational database. Java Persistence consists of three areas:

= The Java Persistence API
= The query language
= Object/relational mapping metadata

Java Naming and Directory Interface

The JavaNaming and Directory Interface (JNDI) provides naming and directory
functionality, enabling applications to access multiple naming and directory services,
including existing naming and directory services such as LDAP, NDS,DNS, and NIS. It
provides applications with methods for performing standard directory operations, such as
associating attributes with objects and searching for objects using their attributes. Using
JNDI, a Java EE application can store and retrieve any type of named Java object, allowing
Java EE applications to coexist with many legacy applications and systems.

Java EE naming services provide application clients, enterprise beans, and web
components with access to a JNDI naming environment. A naming environment allows a
component to be customized without the need to access or change the component’s source
code. A container implements the component’s environment and provides it to the component
as a JNDI naming context.

A Java EE component can locate its environment naming context using JNDI
interfaces. A component can create a javax.naming.InitialContext object and looks up the
environment naming context in InitialContext under the name java:comp/env. A component’s
naming environment is stored directly in the environment naming context or in any of its
direct or indirect subcontexts.

A Java EE component can access named system-provided and user-defined objects.
The names of system-provided objects, such as JTA UserTransaction objects, are stored in the
environment naming context, java:comp/env. The Java EE platform allows a component to
name user-defined objects, such as enterprise beans, environment entries, JDBC DataSource
objects, and message connections. An object should be named within a subcontext of the
naming environment according to the type of the object. For example, enterprise beans are
named within the subcontext java:comp/env/ejb, and JDBC DataSource references in the
subcontext java:comp/env/jdbc.

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a Java
EE application to authenticate and authorize a specific user or group of users to run it. JAAS
is a Java programming language version of the standard Pluggable Authentication Module
(PAM) framework, which extends the Java Platform security architecture to support user-
based authorization.

Simplified Systems Integration

The Java EE platform is a platform-independent, full systems integration solution that
creates an open marketplace in which every vendor can sell to every customer. Such a
marketplace encourages vendors to compete, not by trying to lock customers into their
technologies but instead by trying to outdo each other in providing products and services that
benefit customers, such as better performance, better tools, or better customer support.

The Java EE 5 APIs enable systems and applications integration through the
following:

= Unified application model across tiers with enterprise beans

= Simplified request-and-response mechanism with JSP pages and servlets

= Reliable security model with JAAS

= XML-based data interchange integration with JAXP, SAAJ, and JAX-WSSimplified
interoperability with the J2EE Connector

1.4 May chua &rng dung Java (Java Application Server)

Thuong mai:

= IBM WebSphere
Free:

= Tomcat
1.5 Cai dat moi trwong

151 JDK/JRE

JRE 7: (https://java.com/en/download/manual java7.jsp), cai dat vao thu muc
"C:\work\jre7"
Tao bién moi truong JRE_HOME = "C:\work\jre7"

1.5.2 Application Server Tomcat

= Tomcat 7: http://tomcat.apache.org/download-70.cgi (chi can ban core), cai dat vao
thu muc "C:\work\tomcat7"

= Ta0 bién méi trusng CATALINA_HOME = "C:\work\tomcat7"

= Khai dong server Tomceat: C:\work\tomcat7\bin\startup.bat. Mac dinh server nghe &
cong TCP 8080. Dung browser két néi http://localhost:8080 dé kiém tra server dd chay
t6t. bPé két thuc server, chay chuong trinh Shutdown:
C:\work\tomcat7\bin\shutdown.bat hoac dong ctra sd Tomcat server

= Kiém tra server Tomcat bang cach tao file hellojsp dit trong thu muc
"tomcat7\webapps\examples” vai noi dung sau:

<html>
<head>
<title>Hello World</title>
</head>
<body>
Hello World!

<% out.printIn("Your IP address is " + request.getRemoteAddr()); %>
</body>
</html>

= Dung browser truy nhap dén dia chi "http://localhost:8080/examples/hello.jsp", két
qua trang web la:

Hello World!
Your IP address is 127.0.0.1

Mic dinh cac file cia mdi ung dung web dugc dé trong thu muc
"tomcat7\webapps\xxx" trong d6 "xxx" 1a tén ¢ng dung va duoc truy nhap bang browser tai
dia chi "http://localhost:8080/xxx" nhu vi du véi file hello.jsp. C6 thé thiét lap dé cac tng
dung nay duoc dit trong cac thu muc khac bang Context file. Vi du mudn tao tng dung web
"hello jsp" va dé céac file tai thu muc "C:\work\avaProg\hello_jsp”, can tao file
"hello_jsp.xml" trong thu muc "tomcat7\conf\Catalina\localhost™ v&i néi dung nhu sau:

| <Context path="/hello_jsp" docBase="C:/work/JavaProg/hello_jsp" />

Copy file hello.jsp bén trén vao thu muc "C:/work/JavaProg/hello jsp", khi d6 c6 thé
truy nhap dén ung dung nay theo dia chi "http://localhost:8080/hello_jsp/hello.jsp"

1.5.3 Eclipse

= Download Eclipse Luna for Java EE:
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/rel
ease/luna/SR1a/eclipse-jee-luna-SR1a-win32-x86_64.zip

= Thiét lap server Tomcat trong Eclipse:

Khai dong Eclipse, hién thi ctra s6 cac server (menu Window > Show View > Server).
Trong cua sd server, tao server Tomcat (menu chudt phai > New > Server, trong muc
“Select server type” chon “Apache” va tim dén phién ban Tomcat dung véi ban da cai dat
trong muc trén, dua cac thong sb con lai vao va click “Finish”. Eclipse s& hoan thanh nét
cac cong viéc két ndi moi truong voi may cha Tomcat. Néu thanh cdng, trong cia s6
Server s& nhin thay méay cha Tomcats vira tao. Click chudt phai vao may cha nay va chon
“Start”. Kiém tra thong tin log cua may chu trong cira s6 Console va dung browser két ndi
kiém tra server Tomcat tai dia chi http://localhost:8080.

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/SR1a/eclipse-jee-luna-SR1a-win32-x86_64.zip
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/luna/SR1a/eclipse-jee-luna-SR1a-win32-x86_64.zip
http://localhost:8080/

Chwong 2. Java Servlet

2.1 Mo hinh &rng dung Web v@i Java Servlet

In the Java 2 platform, web components provide the dynamic extension capabilities for
a web server. Web components are either Java servlets, JSP pages, or web service endpoints.
The interaction between a web client and a web application is illustrated in Figure 3-1. The
client sends an HTTP request to the web server. A web server that implements Java Servlet
and JavaServer Pages technology converts the request into an HTTPServletRequest object.
This object is delivered to a web component, which can interact with JavaBeans components
or a database to generate dynamic content. The web component can then generate an
HTTPServletResponse or it can pass the request to another web component. Eventually a web
component generates a HTTPServletResponse object. The web server converts this object to
an HTTP response and returns it to the client.

(J2EE tutorial) trang 78

Web Server

EEE——
o > HttpServlet

HTTP Request
Request —

Web

Client ——
4 HttpServlet
pre Response

Response| \—/

Web
Components o

v

JavaBeans
Components

Hinh vé 4: Java WebApplication RequestHandling

Servlets are Java programming language classes that dynamically process requests and
construct responses. JSP pages are text-based documents that execute as servlets but allow a
more natural approach to creating static content. Although servlets and JSP pages can be used
interchangeably, each has its own strengths. Servlets are best suited for service-oriented
applications (web service endpoints are implemented as servlets) and the control functions of
a presentation-oriented application, such as dispatching requests and handling nontextual data.
JSP pages are more appropriate for generating text-based markup such as HTML, Scalable
Vector Graphics (SVG), WirelessMarkup Language (WML), and XML.

Since the introduction of Java Servlet and JSP technology, additional Java
technologies and frameworks for building interactive web applications have been developed.
Figure 3-2 illustrates these technologies and their relationships.

JavaServer Pages
Standard Tag Library

JavaServer Faces

JavaServer Pages

JavaServlet

Hinh vé 5: JavaWebApplication Technologies

Notice that Java Servlet technology is the foundation of all the web application
technologies, so you should familiarize yourself with the material in Chapter 4, “Java Servlet
Technology,” even if you do not intend to write servlets. Each technology adds a level of
abstraction that makes web application prototyping and development faster and the web
applications themselves more maintainable, scalable, and robust.

Web components are supported by the services of a runtime platform called a web
container. A web container provides services such as request dispatching, security,
concurrency, and life-cycle management. It also gives web components access to APIs such
as naming, transactions, and email.

Certain aspects of web application behavior can be configured when the application is
installed, or deployed, to the web container. The configuration information is maintained in a
text file in XML format called a web application deployment descriptor (DD). ADDmust
conform to the schema described in the Java Servlet Specification.

This chapter gives a brief overview of the activities involved in developing web
applications. First it summarizes the web application life cycle. Then it describes how to
package and deploy very simple web applications on the Application Server. It moves on to
configuring web applications and discusses how to specify the most commonly used
configuration parameters. It then introduces an example, Duke’s Bookstore, which illustrates
all the Java EE web-tier technologies, and describes how to set up the shared components of
this example. Finally it discusses how to access databases from web applications and set up
the database resources needed to run Duke’s Bookstore.

2.2 Hello World Servlet Application

2.2.1 Tao project my_servet voi Eclipse

= Eclipse: new Dynamic Web Project, dat tén la my_servlet
= Thém library Servlet API “servlet-api” trong thu muc “tomcat7\lib”

E Properties for hello_servlet @@ﬂ

Java Build Path T

» Resource

Builders | # Source | (= Projects| Ei Libraries |0‘z.} Order and Export|

Deployment Assembl JARs and class folders on the build path:

Java Build Path @t—api]ar - C\Working\tomcat7\lib_-> l Add JARs... l
» Java Code Style . = EAR Libraries
» Java Compiler . =\ JRE System Library [JavaSE-17] | Add Extemal JaRs.. <
» Java Editor > B Web App Libraries l Add Variable... l
Javadoc Location
» JavaScript l Add Library...]

Hinh vé 6: B6 sung thw vién Servlet API vao project trong Eclipse

= New Servlet: GreetingServlet

package servlets;

import java.io.*;

import java.util.*;

import java.sgl.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class GreetingServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);

PrintWriter out = response.getWriter();

// then write the data of the response
out.printIn("<html>" + "<head><title>Hello</title></head>");

// then write the data of the response
out.printIn(
"<body bgcolor=\"#ffffff\">"
+"<h2>Hello, my name is Duke. What's yours?</h2>"
+ "<form method=\"get\" >"
//+ "<form method=\"get\" action=\"/hello_servlet/response\">"
+ "<input type=\"text\" name=\"username\" size=\"25\">"
+"<p></p>" + "<input type=\"submit\" value=\"Submit\">"
+ "<input type=\"reset\" value=\"Reset\">" + "</form>");

String username = request.getParameter("username");

if ((username != null) && (username.length() > 0)) {
RequestDispatcher dispatcher = getServletContext()
.getRequestDispatcher(
"/response");

if (dispatcher != null) {
dispatcher.include(request, response);

}
}

out.println("</body></html>");

out.close();

}
}

= New Servlet: ResponseServliet

package servlets;

import java.io.*;

import java.util.*;

import java.sgl.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class ResponseServlet extends HttpServlet {
public void doGet(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {
PrintWriter out = response.getWriter();

// then write the data of the response
String username = request.getParameter("username");

if ((username != null) && (username.length() > 0)) {
out.printin("<h2>Hello, " + username + "l</h2>");
}
}
}

= Tao file web.xml trong thu muc “my_servlet\WebContent\WEB-INF”

<web-app >
<display-name>My Servlet Application</display-name>

<servlet>
<display-name>GreetingServlet</display-name>
<servlet-name>GreetingServlet</servlet-name>
<servlet-class>servlets.GreetingServlet</servlet-class>
</servlet>

<servlet>
<display-name>ResponseServlet</display-name>
<servlet-name>ResponseServlet</servlet-name>
<servlet-class>servlets.ResponseServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>GreetingServlet</servlet-name>
<url-pattern>/greeting</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>ResponseServlet</servlet-name>
<url-pattern>/response</url-pattern>
</servlet-mapping>

</web-app>

Thiét lap sir dung may chu Tomcat dé chay @ng dung servlet (Run Configurations):
Menu Run > Run Configurations, chon Tomcat server.

E:.] Run Configurations

X

Create, manage, and run configurations ~

@ Server already running @

R IR

MName: Tomcat v7.0 Server at localhost
type filter text

™ Server . ®= Arguments| ¥ Classpath| %~ Source | 8 Environment| =] Common

This launch configuration can be used to launch the server specified below. To

access further options for configuring the server, open the server's editor from the
Servers view.

4 f Apache Tomcat
& Tomcat v7.0 Server at localhost
S Eclipse Application
EZ Eclipse Data Tools

Server: Tomcat v7.0 Server at localhost v
3]
Generic Server
B Generic Server(External Launch) Runtime Environment: Apache Tomcat v7.0
B HTTP Preview Host name: localhost

Hinh vé 7: Kiém tra ciu hinh chay may chi wng dung J2EE trong Eclipse

Chay tng dung my_servlet véi Tomcat server (menu Run > Run As > Run on Server).
May chi Tomcat s& ty dong dugc chay va thong tin log s& hién thi trong cta sb
Console.

Dung web browser truy nhap dén dia chi http://localhost:8080/my_servlet/greeting.
Giao dién chuong trinh web nhan dugc nhu bén dudi:

Hello, my name is Duke. What's yours?

Submit ” Reset I

Hinh vé 8: Giao dién @wng dung web my_servlet
2.2.2 Ddng goi my_servlet

Sau khi dd chay thtr thanh céng project my_servlet, c6 thé dong goi project nay dé cai
dat (deploy) Ién c&c may cha tng dung. Sur dung chirc ndang export project trong Eclipse va

tao ra file WAR. Céu trac file WAR duoc m0 ta nhu trong hinh v& bén dudi ((J2EE tutorial)
trang 81).

http://localhost:8080/my_servlet/greeting

Assembly
Root

JSP pages,
static HTML pages,
applet classes, efc.

—
lib I classes tags
| — | S
web.xml
sun-web.xml
* tld

Library All server-side All .tag files
archive files .class files for for this
this web module web module

Hinh vé 9: WebModule Structure

In the Java EE architecture, web components and static web content files such as

images are called web resources. A web module is the smallest deployable and usable unit of
web resources. A Java EE web module corresponds to a web application as defined in the
Java Servlet specification.

files:

In addition to web components and web resources, a web module can contain other

Server-side utility classes (database beans, shopping carts, and so on). Often these
classes conform to the JavaBeans component architecture.
Client-side classes (applets and utility classes).

A web module has a specific structure. The top-level directory of a web module is the

document root of the application. The document root is where JSP pages, client-side classes
and archives, and static web resources, such as images, are stored.

The document root contains a subdirectory named WEB-INF, which contains the

following files and directories:

web.xml: The web application deployment descriptor

Tag library descriptor files (see “Tag LibraryDescriptors” on page 245)

classes: A directory that contains server-side classes: servlets, utility classes, and
JavaBeans components

tags: A directory that contains tag files, which are implementations of tag libraries (see
“Tag File Location” on page 233)

lib: A directory that contains JAR archives of libraries called by server-side classes

If your web module does not contain any servlets, filter, or listener components then it

does not need a web application deployment descriptor. In other words, if your web module

only contains JSP pages and static files then you are not required to include a web.xml file.
The hellol example, first discussed in “Packaging WebModules” on page 83, contains only
JSP pages and images and therefore does not include a deployment descriptor.

You can also create application-specific subdirectories (that is, package directories) in
either the document root or the WEB-INF/classes/ directory. A web module can be deployed
as an unpacked file structure or can be packaged in a JAR file known as a web archive
(WAR) file. Because the contents and use ofWARfiles differ from those of JAR
files, WARfile names use a .war extension. The web module just described is portable; you
can deploy it into any web container that conforms to the Java Servlet Specification.

To deploy aWARon the Application Server, the file must also contain a runtime
deployment descriptor. The runtime deployment descriptor is an XML file that contains
information such as the context root of the web application and the mapping of the portable
names of an application’s resources to the Application Server’s resources. The Application
Server web application runtimeDDis named sun-web.xml and is located in the WEB-INF
directory along

with the web applicationDD. The structure of a web module that can be deployed on
the Application Server is shown in Figure 3-5.

2.2.3 Deploy my_servlet Ién Tomcat server

Tomcat mic dinh str dung thu muc “tomcat7/webapps” dé chtra cac (ng dung web.
Cach don gian nhat dé deploy my_servlet 1én Tomcat 13 copy file nay vao thu muc wabapp.
Tomcat s€ tu dong phat hién file dong goi ung dung nay va deploy. Sau khi Tomcat deploy
thanh cong, dung web browser truy nhap vao dia chi
http://localhost:8080/my_servlet/greeting dé sir dung dich vu.

Phuong phép copy file WAR vao thu muc webapp an chira nhiéu yéu té an ninh (vi
doi hoi ¢6 toan quyén truy nhap dén thu muc webapp cua Tomcat). Mot phuong phap khac
kha pho bién 1a str dung Context.

<copy from Tomcat help: http://localhost:8080/docs/deployer-howto.html >

In talking about deployment of web applications, the concept of a Context is required
to be understood. A Context is what Tomcat calls a web application.

In order to configure a Context within Tomcat a Context Descriptor is required. A
Context Descriptor is simply an XML file that contains Tomcat related configuration for a
Context, e.g naming resources or session manager configuration. In earlier versions of Tomcat
the content of a Context Descriptor configuration was often stored within Tomcat's primary
configuration file server.xml but this is now discouraged (although it currently still works).

Context Descriptors not only help Tomcat to know how to configure Contexts but
other tools such as the Tomcat Manager and TCD often use these Context Descriptors to
perform their roles properly.

The locations for Context Descriptors are:

http://localhost:8080/hello_servlet/greeting
http://localhost:8080/docs/deployer-howto.html

[1] $CATALINA_BASE/conf/[enginename]/[hostname]/[webappname].xml
[2] $CATALINA_BASE/webapps/[webappname]/META-INF/context.xml

Files in (1) are named [webappname].xml but files in (2) are named context.xml. If a
Context Descriptor is not provided for a Context, Tomcat configures the Context using default
values.

Str dung phuong phap sb (1), copy céc file class (dich tir 2 file servlet bén trén) vao
thu muc “C:/Working/workspace/java/my_servlet/\WWebContent\WEB-INF” va tao file context
my_servlet.xml trong thu muc “tomcat7\conf\Catalina\localhost” v&i ndi dung nhu sau:

<Context docBase="C:/Working/workspace/java/my_servlet/WebContent" reloadable="true”>
</Context>

Khi do, Tomcat tu dong tao ra mot ing dung web co dia chi truy nhap trung vai tén
cua file xml (1& my_servlet) va noi dung Ia cac file nam trong thu muc docBase. Tham sb
reloadable = “true” dung dé thdng béo cho Tomcat biét context ndy yéu cau mdi khi cd su
thay ddi trong thu muc WEB-INF (lib, classes, v.v..) thi tu dong load lai tng dung my_servlet
ma khong phai khoi dong lai Tomcat. Phuong phap nay rat ¢6 ich khi tng dung dang trong
qua trinh xay dung hoac update.

Sau khi Tomcat deploy thanh céng, dung web browser truy nhap vao dia chi
http://localhost:8080/my_servlet/greeting dé sir dung dich vu.

2.2.4 Phdn tich két qud chay chwong trinh my_servlet

= MOi ung dung servlet dugc dat trong mot thu muc hoic mot file WAR, tuong (ng véi
mot contex. Tén cua context chinh 1a duong dan goc dé dé truy nhap dén tng dung
servlet nay tir client browser. Trong vi du trén, ang dung “my_servlet” cé thé duoc
truy nhap dén bang duong dan URL http:/localhost:8080/my _servlet

= MOJi servlet twong ung véi mot URL “path”. Vi du “/greeting” duoc khai bao ung véi
servlet GreetingServlet. Khi client browser truy nhap dén duong dan nay (sau duong
dan gbc, vi du http://localhost:8080/my_servlet/greeting), servlet twong &ng s& duoc
triéu goi. Noi dung trang web tra vé cho client browser dugc tao ra bang cach xu ly
phuong thirc doGet() cua servlet.

= Mot servlet c6 thé dugc triéu goi xuat phat tir mot request cua client browser hoic
cling co6 thé tir mot servlet khac thong qua RequestDispatcher. Vi du servlet
ResponseServlet dugc triéu goi khi servlet GreetingServlet xir ly request va dispatch
dén duong dan “/response”.

2.3 CacKky thuat xtr ly Servlet

2.3.1 Servlet lam viéc nhw thé nao

A servlet life cycle can be defined as the entire process from its creation till the
destruction. The following are the paths followed by a servlet

= The servlet is initialized by calling the init() method.

http://localhost:8080/hello_servlet/greeting
http://localhost:8080/hello_servlet
http://localhost:8080/hello_servlet/greeting

= The servlet calls service() method to process a client's request.
= The servlet is terminated by calling the destroy() method.
= Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in details.

2.3.1.1 The init() method

The init method is designed to be called only once. It is called when the servlet is first
created, and not called again for each user request. So, it is used for one-time initializations,
just as with the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the
servlet, but you can also specify that the servlet be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with each
user request resulting in a new thread that is handed off to doGet or doPost as appropriate.
The init() method simply creates or loads some data that will be used throughout the life of
the servlet.

The init method definition looks like this:

public void init() throws ServletException {
// Initialization code...

}

2.3.1.2 The service() method

The service() method is the main method to perform the actual task. The servlet
container (i.e. web server) calls the service() method to handle requests coming from the
client(browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread
and calls service. The service() method checks the HTTP request type (GET, POST, PUT,
DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

The service() method is called by the container and service method invokes doGet,
doPost, doPut, doDelete, etc. methods as appropriate. So you have nothing to do with
service() method but you override either doGet() or doPost() depending on what type of
request you receive from the client.

The doGet() and doPost() are most frequently used methods with in each service
request. Here is the signature of these two methods.
2.3.1.3 The doGet(), doPost() method

A GET, POST request results from a normal request for a URL or from an HTML
form that has no METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException {

// Servlet code

}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// Servlet code

}

2.3.1.4 The destroy() method

The destroy() method is called only once at the end of the life cycle of a servlet. This

method gives your servlet a chance to close database connections, halt background threads,
write cookie lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage

collection. The destroy method definition looks like this:

public void destroy() {
// Finalization code...

}

2.3.2 Servlet Container

2.3.2.1 Container la gi

(Bryan Basham, 2008) — trang 39

Servlets don’t have a main() method. They’re under the control of another Java

application called a Container. Tomcat is an example of a Container. When your web server
application (like Apache) gets a request for a servlet (as opposed to, say, a plain old static
HTML page), the server hands the request not to the servlet itself, but to the Container in
which the servlet is deployed. It’s the Container that gives the servlet the HTTP request and
response, and it’s the Container that calls the servlet’s methods (like doPost() or doGet()).

What does the Container give you?

Communications support The container provides an easy way for your servlets to
talk to your web server. You don’t have to build a ServerSocket, listen on a port,
create streams, etc. The Container knows the protocol between the web server and
itself, so that your servlet doesn’t have to worry about an APl between, say, the
Apache web server and your own web application code. All you have to worry about
is your own business logic that goes in your Servlet (like accepting an order from your
online store).

Lifecycle Management The Container controls the life and death of your servlets. It
takes care of loading the classes, instantiating and initializing the servlets, invoking
the servlet methods, and making servlet instances eligible for garbage collection. With
the Container in control, you don’t have to worry as much about resource
management.

= Multithreading Support The Container automatically creates a new Java thread for
every servlet request it receives. When the servlet’s done running the HTTP service
method for that client’s request, the thread completes (i.e. dies). This doesn’t mean
you’re off the hook for thread safety—you can still run into synchronization issues.
But having the server create and manage threads for multiple requests still saves you a

lot of work.

» Declarative Security With a Container, you get to use an XML deployment
descriptor to configure (and modify) security without having to hard-code it into your
servlet (or any other) class code. Think about that! You can manage and change your

security without

= JSP Support You already know how cool JSPs are. Well, who do you think takes
care of translating that JSP code into real Java? Of course. The Container.

How the Container handles a request

HTTP request

o B T3 =X

EERD

Client

container serviet

|Jzer chcks a link that has a
UEL to a servlst instead of a
static page.

® |[=]

[=====3Y)

Client

=2
container E"-, \-'!‘. servie
A
@

rEsponse

request

The container “zees” that the
requast is for a servlet, so the
container creates two objects:

1) HtfpServietResponse
2) HitpServleiRequest

® |[=I

[=====3Y)

Client

‘B_

Lwread

D m‘?““.ﬁ ‘-'_\5\ servlet
container response -] .

The container finds the correct
servlet bazed on the URL in the
request, creates or allocates

a thread for that request, and
passes the request and response
objects to the serviet thread.

@ I et B | The container calls the sendet's
! | Q service() method. Depending on
E-h . \\ serviet the type of requast, the semvice()
Chi container e method calls either the doGet() or
et — doPost() method
request @ / | '
e . service]) For this example, we'll assume the
:TFGFE-C
request was an HTTP GET.
@ I st N The doGet() method generates
i | the dynamic page and stuffs the
ﬁh container Ser"I-'lEf page into the respanse ubje_m.
Client Y Remember, the container stll
respanse o has a reference to the response
servicel) object!
d
et
(6) —= i The thread completes, the
. - S~ - container converis the response
Hb comtainer serviet object into an HTTP respanse,
Client \% sends it back to the client, then
ﬁ\l deletes the request and responze
HTTP response f - k-hﬂadl chjects.
2.3.2.2 Két nbi cac phwong thirc Servlet va vai tro cua Container

The following figure depicts a typical servlet life-cycle scenario.

First the HTTP requests coming to the server are delegated to the servlet container.
The servlet container loads the servlet before invoking the service() method.
Then the servlet container handles multiple requests by spawning multiple threads,

each thread executing the service() method of a single instance of the servlet.

Java virnual machine Gaiilat

F [} -

i
Serviet service()
Container

destroy()
A A A -

Requests to the servlet container

Web Server

Hinh vé 10: 3.1.5 Vong doi Servlet

Thém céac phuong thuc init(), destroy() hién thi thong tin log nhu bén dudi dong thoi
ciing bd sung hién thi thdng tin log trong doGet():

public void init() throws ServletException {
System.out.printin("--> GreetingServlet.init()...");

}

public void destroy() {
System.out.printin("--> GreetingServlet.destroy()...");

}

Pé y that két qua thdng tin log trén Tomcat server khi nhiéu lan truy nhap dén
/greeting tir mot browser hozc cuing IGc tir nhiéu browser nhu sau:

--> GreetingServlet.init()...

--> GreetingServlet.doGet()...
--> GreetingServlet.doGet()...
--> ResponseServlet.init()...
--> ResponseServlet.doGet()...
--> GreetingServlet.doGet()...
--> ResponseServlet.doGet()...
--> GreetingServlet.doGet()...
--> ResponseServlet.doGet()...
--> GreetingServlet.doGet()...
--> GreetingServlet.doGet()...

C6 nghia 1a du duoc truy nhap tir nhiéu browser khac nhau, mdi object servlet duoc
tao ra khi browser dau tién truy nhap dén va object nay s& ton tai mai, ké ca khi mot browser

khac truy nhap dén thi object servlet cii lai duoc sir dung. Viéc quan Iy servlet nhur vay duong
nhu di nguoc lai ciu trdc quan ly phién 1am viéc caa user. Thong thudng, cac user khac nhau
truy nhap dén cling mét tng dung web tir cac browser khac nhau s& phai duoc quan Iy phién
lam viéc riéng ré. Véan dé nay s& duoc ban ki thém trong phan sau (quan |y phién lam viéc).

2.3.3 Trao doi dir liéu véi client

2.3.3.1 Form Data

Trong vi du GreetingServlet, dit liéu nhap vao ¢ text box dugc gui tur client I1én server
va duoc ly ra trong phuong thirc doGet(). Cac dir liéu client nhap vao thdng qua céc input
box dang khac nhu check box, radio button, v.v.. cling c6 thé dugc liy ra twong tu nhu bing
phuong thuc request.getParameter() trong phuong thirc doGet().

Vi du sau day két hop gitra form data trong mot file HTML va goi dén servlet dé xir ly
dix ligu client gui 1én. Tao file CheckBox.html trong thu muc WebContent véi ngi dung sau:

<html>

<body>

<form action="CheckBox" method="POST" target="_blank">

<input type="checkbox" name="maths" checked="checked" /> Maths
<input type="checkbox" name="physics" /> Physics

<input type="checkbox" name="chemistry" checked="checked" />

Chemistry
<input type="submit" value="Select Subject" />
</form>
</body>
</html>

Tao servlet CheckBoxServlet véi phuong thirc doGet() nhu sau:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CheckBox extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");

PrintWriter out = response.getWriter();
String title = "Reading Checkbox Data";
String docType = "<!doctype html public \"-//w3c//dtd html 4.0 " +
"transitional//en\">\n";
out.printin(docType +
"<html>\n" +"<head><title>" + title + "</title></head>\n" +
"<body bgcolor=\"#f0f0f0\">\n" +
"<h1 align=\"center\">" + title + "</h1>\n" +"\n" +
" Maths Flag : : "
+ request.getParameter("maths") + "\n" +
" Physics Flag: : "

+ request.getParameter("physics") + "\n" +

" Chemistry Flag: :"

+ request.getParameter("chemistry") + "\n" +
"\n" +

"</body></html>");

Cuébi cung 1a khai bao thém servlet nay trong file web.xml:

<servlet>
<display-name>CheckBox</display-name>
<servlet-name>CheckBox</servlet-name>
<servlet-class>CheckBox</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>CheckBox</servlet-name>
<url-pattern>/CheckBox</url-pattern>

</servlet-mapping>

Chay server truy nhap dia chi http://localhost:8080/my_servlet/CheckBox.html dé
Kiém tra chuong trinh.

2.3.3.2 Doc thong tin trong client request

When a browser requests for a web page, it sends lot of information to the web server
which can not be read directly because this information travel as a part of header of HTTP
request. You can check HTTP Protocol for more information on this.

Following is the important header information which comes from browser side and
you would use very frequently in web programming:

Header Description

This header specifies the MIME types that the browser or other
Accept clients can handle. Values of image/png or image/jpeg are the
two most common possibilities.

This header specifies the character sets the browser can use to

Accept-Charset display the information. For example 1SO-8859-1.

This header specifies the types of encodings that the browser
Accept-Encoding knows how to handle. Values of gzip or compress are the two
most common possibilities.

This header specifies the client's preferred languages in case the
Accept-Language servlet can produce results in more than one language. For
example en, en-us, ru, etc.

This header is used by clients to identify themselves when

Authorization accessing password-protected Web pages.

This header indicates whether the client can handle persistent

Connection . . .) .
HTTP connections. Persistent connections permit the client or

http://localhost:8080/hello_servlet/CheckBox.html

other browser to retrieve multiple files with a single request. A
value of Keep-Alive means that persistent connections should be
used

Content-Length

This header is applicable only to POST requests and gives the
size of the POST data in bytes.

Cookie

This header returns cookies to servers that previously sent them
to the browser.

Host

This header specifies the host and port as given in the original
URL.

If-Modified-Since

This header indicates that the client wants the page only if it has
been changed after the specified date. The server sends a code,
304 which means Not Modified header if no newer result is
available.

This header is the reverse of If-Modified-Since; it specifies that

If-Unmodified-Since the operation should succeed only if the document is older than

the specified date.

This header indicates the URL of the referring Web page. For
example, if you are at Web page 1 and click on a link to Web

Referer page 2, the URL of Web page 1 is included in the Referer header
when the browser requests Web page 2.
This header identifies the browser or other client making the
User-Agent request and can be used to return different content to different

types of browsers.

Dé doc cac thdng tin nay, HttpServletRequest cung cap mot sé phuong thic:

S.N. Method & Description

Cookie[] getCookies()

! Returns an array containing all of the Cookie objects the client sent with this request.
9 Enumeration getAttributeNames()
Returns an Enumeration containing the names of the attributes available to this request.
3 Enumeration getHeaderNames()
Returns an enumeration of all the header names this request contains.
Enumeration getParameterNames()
4 Returns an Enumeration of String objects containing the names of the parameters
contained in this request.
HttpSession getSession()
5 Returns the current session associated with this request, or if the request does not have a
session, creates one.
6 HttpSession getSession(boolean create)

Returns the current HttpSession associated with this request or, if if there is no current

session and create is true, returns a new session.

Locale getLocale()
Returns the preferred Locale that the client will accept content in, based on the Accept-
Language header

Object getAttribute(String name)
Returns the value of the named attribute as an Object, or null if no attribute of the given
name exists.

ServletinputStream getlnputStream()
Retrieves the body of the request as binary data using a ServletInputStream.

10

String getAuthType()
Returns the name of the authentication scheme used to protect the servlet, for example,
"BASIC" or "SSL," or null if the JSP was not protected

11

String getCharacterEncoding()
Returns the name of the character encoding used in the body of this request.

12

String getContentType()
Returns the MIME type of the body of the request, or null if the type is not known.

13

String getContextPath()
Returns the portion of the request URI that indicates the context of the request.

14

String getHeader(String name)
Returns the value of the specified request header as a String.

15

String getMethod()
Returns the name of the HTTP method with which this request was made, for example,
GET, POST, or PUT.

16

String getParameter(String name)
Returns the value of a request parameter as a String, or null if the parameter does not
exist.

17

String getPathInfo()
Returns any extra path information associated with the URL the client sent when it made
this request.

18

String getProtocol()
Returns the name and version of the protocol the request.

19

String getQueryString()
Returns the query string that is contained in the request URL after the path.

20

String getRemoteAddr()
Returns the Internet Protocol (IP) address of the client that sent the request.

21

String getRemoteHost()
Returns the fully qualified name of the client that sent the request.

22

String getRemoteUser()
Returns the login of the user making this request, if the user has been authenticated, or
null if the user has not been authenticated.

String getRequestURI()

23 Returns the part of this request's URL from the protocol name up to the query string in
the first line of the HTTP request.
24 String getRequestedSessionld()
Returns the session 1D specified by the client.
o5 String getServletPath()
Returns the part of this request's URL that calls the JSP.
String[] getParameterValues(String name)
26 Returns an array of String objects containing all of the values the given request
parameter has, or null if the parameter does not exist.
boolean isSecure()
27 Returns a boolean indicating whether this request was made using a secure channel, such
as HTTPS.
int getContentLength()
28 Returns the length, in bytes, of the request body and made available by the input stream,
or -1 if the length is not known.
29 int getIntHeader(String name)
Returns the value of the specified request header as an int.
30 int getServerPort()
Returns the port number on which this request was received.
Poan chuong trinh sau doc va hién thi trén trang web tit ca cac thong tin trong client
request:

Enumeration headerNames = request.getHeaderNames();
out.print("<table width=\"100%\" border=\"1\" align=\"center\">\n" +
"<tr bgcolor=\"#949494\">\n" +
"<th>Header Name</th><th>Header Value(s)</th>\n"+
"</tr>\n");

while(headerNames.hasMoreElements()) {
String paramName = (String)headerNames.nextElement();
out.print("<tr><td>" + paramName + "</td>\n");
String paramValue = request.getHeader(paramName);
out.printin("<td>" + paramValue + "</td></tr>\n");

}

out.printin("</table>\n");

2.3.3.3 Tra théng tin tir server vé client

Uhen a Web server responds to a HTTP request to the browser, the response typically

consists of a status line, some response headers, a blank line, and the document. A typical
response looks like this:

| HTTP/1.1 200 OK

Header2: ...

HeaderN: ...
(Blank Line)
<!doctype ...>

<html>

<body>

</body>
</html>

Content-Type: text/html

<head>...</head>

The status line consists of the HTTP version (HTTP/1.1 in the example), a status code
(200 in the example), and a very short message corresponding to the status code (OK in the

example).

Following is a summary of the most useful HTTP 1.1 response headers which go back
to the browser from web server side and you would use them very frequently in web

programming:

Header

Description

Allow

This header specifies the request methods (GET, POST, etc.) that
the server supports.

Cache-Control

This header specifies the circumstances in which the response
document can safely be cached. It can have values public, private
or no-cache etc. Public means document is cacheable, Private
means document is for a single user and can only be stored in
private (nonshared) caches and no-cache means document should
never be cached.

Connection

This header instructs the browser whether to use persistent in
HTTP connections or not. A value of close instructs the browser
not to use persistent HTTP connections and keep-alive means
using persistent connections.

Content-Disposition

This header lets you request that the browser ask the user to save
the response to disk in a file of the given name.

Content-Encoding

This header specifies the way in which the page was encoded
during transmission.

Content-Language

This header signifies the language in which the document is
written. For example en, en-us, ru, etc.

Content-Length

This header indicates the number of bytes in the response. This
information is needed only if the browser is using a persistent
(keep-alive) HTTP connection.

Content-Type

This header gives the MIME (Multipurpose Internet Mail
Extension) type of the response document.

Expires

This header specifies the time at which the content should be
considered out-of-date and thus no longer be cached.

Last-Modified

This header indicates when the document was last changed. The
client can then cache the document and supply a date by an If-
Modified-Since request header in later requests.

Location

This header should be included with all responses that have a
status code in the 300s. This notifies the browser of the document
address. The browser automatically reconnects to this location
and retrieves the new document.

Refresh

This header specifies how soon the browser should ask for an
updated page. You can specify time in number of seconds after
which a page would be refreshed.

Retry-After

This header can be used in conjunction with a 503 (Service
Unavailable) response to tell the client how soon it can repeat its
request.

Set-Cookie

This header specifies a cookie associated with the page.

Dé doc céc thdng tin nay, HttpServletResponse cung cap mot sé phuong thic:

S.N. Method & Description

String encodeRedirectURL(String url)
Encodes the specified URL for use in the sendRedirect method or, if encoding is not
needed, returns the URL unchanged.

String encodeURL(String url)
Encodes the specified URL by including the session ID in it, or, if encoding is not
needed, returns the URL unchanged.

boolean containsHeader(String name)
Returns a boolean indicating whether the named response header has already been set.

boolean isCommitted()
Returns a boolean indicating if the response has been committed.

void addCookie(Cookie cookie)
Adds the specified cookie to the response.

void addDateHeader(String name, long date)
Adds a response header with the given name and date-value.

void addHeader(String name, String value)
Adds a response header with the given name and value.

void addIntHeader(String name, int value)
Adds a response header with the given name and integer value.

void flushBuffer()

Forces any content in the buffer to be written to the client.

10

void reset()
Clears any data that exists in the buffer as well as the status code and headers.

11

void resetBuffer()
Clears the content of the underlying buffer in the response without clearing headers or
status code.

12

void sendError(int sc)
Sends an error response to the client using the specified status code and clearing the
buffer.

13

void sendError(int sc, String msg)
Sends an error response to the client using the specified status.

14

void sendRedirect(String location)
Sends a temporary redirect response to the client using the specified redirect location
URL.

15

void setBufferSize(int size)
Sets the preferred buffer size for the body of the response.

16

void setCharacterEncoding(String charset)
Sets the character encoding (MIME charset) of the response being sent to the client, for
example, to UTF-8.

17

void setContentLength(int len)
Sets the length of the content body in the response In HTTP servlets, this method sets the
HTTP Content-Length header.

18

void setContentType(String type)
Sets the content type of the response being sent to the client, if the response has not been
committed yet.

19

void setDateHeader(String name, long date)
Sets a response header with the given name and date-value.

20

void setHeader(String name, String value)
Sets a response header with the given name and value.

21

void setintHeader(String name, int value)
Sets a response header with the given name and integer value.

22

void setLocale(Locale loc)
Sets the locale of the response, if the response has not been committed yet.

23

void setStatus(int sc)
Sets the status code for this response.

Vi du sau day thiét 1ap trang web ma phia client tu dong refresh lai sau mdi 5 giay:

public class Refresh extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

// Set refresh, autoload time as 5 seconds
response.setintHeader("Refresh", 5);

// Set response content type
response.setContentType("text/html");

// Get current time
Calendar calendar = new GregorianCalendar();
String am_pm;
int hour = calendar.get(Calendar.HOUR);
int minute = calendar.get(Calendar.MINUTE);
int second = calendar.get(Calendar.SECOND);
if(calendar.get(Calendar.AM_PM) == Q)
am_pm ="AM";
else
am_pm ="PM";

nn

String CT = hour+":"+ minute +":"+ second +" "+ am_pm;
PrintWriter out = response.getWriter();
String title = "Auto Refresh Header Setting";
String docType =
"<Idoctype html public \"-//w3c//dtd htm| 4.0 " +
"transitional//en\">\n";
out.printin(docType +
"<html>\n" +
"<head><title>" + title + "</title></head>\n"+
"<body bgcolor=\"#f0f0f0\">\n" +
"<h1 align=\"center\">" + title + "</h1>\n" +
"<p>Current Time is: " + CT + "</p>\n");

2.3.3.4 Xt ly Cookie

Cookies are text files stored on the client computer and they are kept for various

information tracking purpose. Java Servlets transparently supports HTTP cookies. There are
three steps involved in identifying returning users:

Server script sends a set of cookies to the browser. For example name, age, or
identification number etc.

Browser stores this information on local machine for future use.

When next time browser sends any request to web server then it sends those cookies
information to the server and server uses that information to identify the user.

This chapter will teach you how to set or reset cookies, how to access them and how to

delete them.

Tim hiéu vé Cookie:

Cookies are usually set in an HTTP header (although JavaScript can also set a cookie

directly on a browser). A servlet that sets a cookie might send headers that look something
like this:

HTTP/1.1 200 OK

Date: Fri, 04 Feb 2000 21:03:38 GMT

Server: Apache/1.3.9 (UNIX) PHP/4.0b3

Set-Cookie: name=xyz; expires=Friday, 04-Feb-07 22:03:38 GMT;
path=/; domain=tutorialspoint.com

Connection: close

Content-Type: text/html

As you can see, the Set-Cookie header contains a name value pair, a GMT date, a path
and a domain. The name and value will be URL encoded. The expires field is an instruction to
the browser to "forget"” the cookie after the given time and date.

If the browser is configured to store cookies, it will then keep this information until
the expiry date. If the user points the browser at any page that matches the path and domain of
the cookie, it will resend the cookie to the server. The browser's headers might look
something like this:

GET /HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/4.6 (X11; I; Linux 2.2.6-15apmac ppc)
Host: zink.demon.co.uk:1126

Accept: image/gif, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: name=xyz

A servlet will then have access to the cookie through the request method
request.getCookies() which returns an array of Cookie objects.

Thiét 1ap Cookies vai Servlet:

Setting cookies with servlet involves three steps:

(1) Creating a Cookie object: You call the Cookie constructor with a cookie name
and a cookie value, both of which are strings.

‘ Cookie cookie = new Cookie("key","value"); ‘
Keep in mind, neither the name nor the value should contain white space or any of the
following characters:
[[10=,"/?@:; |
(2) Setting the maximum age: You use setMaxAge to specify how long (in seconds)
the cookie should be valid. Following would set up a cookie for 24 hours.

‘ cookie.setMaxAge(60*60*24); ‘
(3) Sending the Cookie into the HTTP response headers: You use
response.addCookie to add cookies in the HTTP response header as follows:

‘ response.addCookie(cookie); ‘

Vi du, tao servlet CookieServlet nhu bén dudi:

package servlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CookieServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// Create cookies for first and last names.
Cookie firstName = new Cookie("first_name", request.getParameter("first_name"));
Cookie lastName = new Cookie("last_name", request.getParameter("last_name"));

// Set expiry date after 24 Hrs for both the cookies.
firstName.setMaxAge(60*60*24);
lastName.setMaxAge(60*60*24);

// Add both the cookies in the response header.
response.addCookie(firstName);
response.addCookie(lastName);

// Set response content type
response.setContentType("text/html");

PrintWriter out = response.getWriter();
String title = "Setting Cookies Example";
String docType = "<!doctype html public \"-//w3c//dtd html 4.0 " + "transitional//en\">\n";
out.printin(docType + "<htmI>\n" + "<head><title>" + title + "</title></head>\n" +
"<body bgcolor=\"#f0fOf0\">\n" + "<h1 align=\"center\">" + title + "</h1>\n" + "\n" +
" First Name: " + request.getParameter("first_name") + "\n" +
" Last Name: " + request.getParameter("last_name") + "\n" +"\n" +
"</body></html>");

Thiét lap céac théng s servlet mapping trong web.xml:

<servlet>
<display-name>CookieServlet</display-name>
<servlet-name>CookieServlet</servlet-name>
<servlet-class>servlets.CookieServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>CookieServlet</servlet-name>
<url-pattern>/cookie</url-pattern>

</servlet-mapping>

Tao file cookie.html ¢ noi dung nhu bén dudi va dé vao thu muc WebContent.

<html>

<body>

<form action="cookie" method="GET">

First Name: <input type="text" name="first_name">

Last Name: <input type="text" name="last_name" />

<input type="submit" value="Submit" />
</form>
</body>
</html>

Dung browser truy nhap téi dia chi http://localhost:8080/my_servlet/cookie.html, noi
dung trang web hién thi trén browser c6 dang nhu bén dudi:

First Name:

Last Name: Submit

Hinh vé 11: Cookie form

Dén day ta s& dung Firefox developer tools dé kham pha chuong trinh vi du cookie
nay. Chon hién thi Developer tools trong Firefox, va chon view Network nhu bén dudi dé
xem hién thi cac thong tin trong phan header cia HTTP request va response

(' http://localhost:3080/my_servlet/cookie.htm C Search ﬁ E * L @ =
First Name:
Last Name: Submit

(r~ 3 Inspector > Console @ Debugger [# Style Editor @ Performance B 22 I - S =T

v Method File Domain Type Size Timeline

Hinh vé 12: Sir dung Firefox Developer tools

Nhap thong tin vao céc text box First Name, Last Name va submit, dung Network
view dé phan tich cac thong tin trong HTTP request & response header:

= Ban dau, browser Firefox chwa duoc thiét 1ap cookie véi web server locahost. HTTP
request header chua c6 thong tin cookie.

= Sau khi submit thong tin 18n web server véi tham sé First Name va Last Name, 2
cookie cuing tén dugc tao ra trén server va duoc gui vé browser trong HTTP response
header.

» Hai cookie nay dugc luu lai trong browser (trong Firefox, chon Vew Option >
Privacy xem phan Individual Cookies va tim dén server local dé xem thdng tin 2
cookie First Name va Last Name dugc luu trong browser).

http://localhost:8080/my_servlet/cookie.html

(' dhttp:;’flocaIhostSUSU;‘my,serv\et,v’cookie?ﬁrstﬁname:Hoang&lastname:Phar c QEearch ﬁ Q * ﬂ‘ @l

Setting Cookies Example

* First Name: Hoang
e Last Name: Pham Huy

[~ L3 Inspector > Console @ Debugger

E{StyleEditDr ‘ @ Performance - | % O 0 x

v Method File O] Headers Cookies ‘ Params | Response | Timings ‘ Preview

Toea) Al M i e s e A s ' Request URL: http://localhost:8888/my_servlet/cookie?first_name=Hoang&last_name=Pham...
Request method: GET

Status code: @ 200 0K Edit and Resend Raw headers

Filter headers

* Response headers (0.277 KB)

Content-Length: "286"

Content-Type: "text/html;charset=ISO-8859-1"

Expires: "Thu, 01 Jan 1970 00:00:00 GMT"

Server: "Jetty(8.1.14.v20131031)"
«<_Set-Cookie: "first_name=Hoang;Expires=Sun, 01-Feb-20...";Expires=Sun, 01-Feb-2015 00:46:75 GUILS

¥ Request headers (0.387 KB)

Host: "localhost:8080"

User-Agent: "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:35.0) Gecko/20100101 Firefox/35.0"
Accept: "text/html,application/xhtml+xmlapplication/xml;q=0.9,*/%q=0.8"
Accept-Language: "en-US,en;q=0.5"

Accept-Encoding: "gzip, deflate”

Referer: "http://localhost8080/my_servlet/cookie.html”

Connection: "keep-alive”

Hinh vé 13: Cookie dwgc tao ra trén server va giri vé client trong HTTP response header

Dung browser két ndi lai dén bat ky trang web nao thudc duong dan /my_servlet (vi
du http://localhost:8080/my_servlet/greeting), phéan tich théng tin HTTP request header sé
thiy thong tin 2 cookie First Name va Last Name duoc ty dong giri tir browser 1én server. Cac
thong tin cookie ndy s& dugc tu dong hét han sau 1 ngay (theo thiét 1ap MaxAge khi tao
cookie) hoic duoc thay doi khi vao lai trang http://localhost:8080/my_servlet/cookie.html.

€ | @ ntip://localhost:8080/my_serviet/greeting & | Q search ﬁ A i A @ | =
- -
Hello, my name is Duke. What's yours?
I
[‘ L3 Inspector ‘ > Console @ Debugger [# style Editor ‘ @ Performance - [& O @ %
v Method File O] Headers Cookies ‘ Params | Response | Timings | Preview
200 GET greeting [sfez] Request URL: http://localhost:80880/my_servlet/greeting

Request method: GET
Status code: @ 2080 OK

Edit and Resend Raw headers

Filter headers

* Response headers (0.114 KB)

Content-Length: "279"
Content-Type: "text/html;charset=1SO-8859-1"
Server: "Jetty(8.1.14.v20131031)"

¥ Request headers (0.347 KB)

Host: "localhost:8080"

Accept: "text/html,application/xhtml+xmil,application/xml;g=0.9*/*q9=0.8"
Accept-Language: "en-US,en;q=0.5"
Accept-Encoding: "gzip, deflate”

«<XJokie: Tirst_name=Hoang; last_name="Pham Huy™___——=»

Connection: "keep-alive”

User-Agent: "Mozilla/5.0 (Windows NT 6.1; WOW#®&4; nv:35.0) Gecko/20100101 Firefox/35.0"

http://localhost:8080/my_servlet/greeting
http://localhost:8080/my_servlet/cookie.html

DPoc Cookies voi Servlet:

Sau khi da thiét 1ap duoc cookie phia browser cua client, viéc cudi cing la doc théng
tin cookie trong mdi HTTP Request ma client giri 1&n server dé xur ly.
To read cookies, you need to create an array of javax.servlet.http.Cookie objects by

calling the getCookies() method of HttpServletRequest. Then cycle through the array, and use
getName() and getVValue() methods to access each cookie and associated value.

Example:

package servlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ReadCookies extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
Cookie cookie = null;
Cookie[] cookies = null;
// Get an array of Cookies associated with this domain
cookies = request.getCookies();

// Set response content type
response.setContentType("text/html");

PrintWriter out = response.getWriter();
String title = "Reading Cookies Example";
String docType = "<!doctype html public \"-//w3c//dtd html 4.0 " + "transitional//en\">\n";
out.printin(docType + "<htmI>\n" + "<head><title>" + title + "</title></head>\n" +
"<body bgcolor=\"#f0f0f0\">\n");
if(cookies != null){
out.printIn("<h2> Found Cookies Name and Value</h2>");
for (inti=0; i < cookies.length; i++){
cookie = cookies[i];
out.print("Name : " + cookie.getName() + ", ");
out.print("Value: " + cookie.getValue()+"
");
}
lelse{
out.printin(
"<h2>No cookies founds</h2>");
}
out.printIn("</body>");
out.printIn("</html>");
}
}

Delete Cookies with Servlet:

To delete cookies is very simple. If you want to delete a cookie then you simply need
to follow up following three steps:

= Read an already exsiting cookie and store it in Cookie object.

= Set cookie age as zero using setMaxAge() method to delete an existing cookie.
= Add this cookie back into response header.

Example:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DeleteCookies extends HttpServlet {

public void doGet(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException {
Cookie cookie = null;
Cookie[] cookies = null;
// Get an array of Cookies associated with this domain
cookies = request.getCookies();

// Set response content type
response.setContentType("text/html");

PrintWriter out = response.getWriter();
String title = "Delete Cookies Example";
String docType = "<!doctype html public \"-//w3c//dtd html 4.0 " + "transitional//en\">\n";
out.printin(docType + "<htmI>\n" + "<head><title>" + title + "</title></head>\n" +
"<body bgcolor=\"#f0f0f0\">\n");
if(cookies = null){
out.printin("<h2> Cookies Name and Value</h2>");
for (inti = 0; i < cookies.length; i++){
cookie = cookies[i];
if((cookie.getName()).compareTo("first_name") == 0){
cookie.setMaxAge(0);
response.addCookie(cookie);
out.print("Deleted cookie : " +
cookie.getName() + "
");
}
out.print("Name : " + cookie.getName() + ", ");
out.print("Value: " + cookie.getValue()+"
");
1
lelsef
out.printin(
"<h2>No cookies founds</h2>");
}
out.printin("</body>");
out.printin("</html>");
}
}

You can also delete your cookies in web browser manually.

Céac phuong thirc xit Iy Cookies cua Servlet:

Following is the list of useful methods which you can use while manipulating cookies
in servlet.

S.N. Method & Description

public void setDomain(String pattern)

1 This method sets the domain to which cookie applies, for example tutorialspoint.com.

5 public String getDomain()

This method gets the domain to which cookie applies, for example tutorialspoint.com.
public void setMaxAge(int expiry)

3 This method sets how much time (in seconds) should elapse before the cookie expires. If
you don't set this, the cookie will last only for the current session.
public int getMaxAge()

4 This method returns the maximum age of the cookie, specified in seconds, By default, -1
indicating the cookie will persist until browser shutdown.

5 public String getName()

This method returns the name of the cookie. The name cannot be changed after creation.

6 public void setValue(String newValue)

This method sets the value associated with the cookie.

y public String getValue()

This method gets the value associated with the cookie.
public void setPath(String uri)

8 This method sets the path to which this cookie applies. If you don't specify a path, the
cookie is returned for all URLs in the same directory as the current page as well as all
subdirectories.

9 public String getPath()

This method gets the path to which this cookie applies.
public void setSecure(boolean flag)

10 This method sets the boolean value indicating whether the cookie should only be sent
over encrypted (i.e. SSL) connections.
public void setComment(String purpose)

11 This method specifies a comment that describes a cookie's purpose. The comment is
useful if the browser presents the cookie to the user.
public String getComment()

12 This method returns the comment describing the purpose of this cookie, or null if the

cookie has no comment.

2.3.4 Qudn ly phién lam viéc (session)

HTTP is a "stateless” protocol which means each time a client retrieves a Web page,

the client opens a separate connection to the Web server and the server automatically does not
keep any record of previous client request. Still there are following three ways to maintain
session between web client and web server:

Cookies:

A webserver can assign a unique session ID as a cookie to each web client and for
subsequent requests from the client they can be recognized using the recieved cookie. This
may not be an effective way because many time browser does not support a cookie, so |
would not recommend to use this procedure to maintain the sessions.

Hidden Form Fields:

A web server can send a hidden HTML form field along with a unique session ID as
follows:

‘ <input type="hidden" name="sessionid" value="12345">

This entry means that, when the form is submitted, the specified name and value are
automatically included in the GET or POST data. Each time when web browser sends request
back, then session_id value can be used to keep the track of different web browsers.

This could be an effective way of keeping track of the session but clicking on a regular
(<A HREF...>) hypertext link does not result in a form submission, so hidden form fields also
cannot support general session tracking.

URL Rewriting:

You can append some extra data on the end of each URL that identifies the session,
and the server can associate that session identifier with data it has stored about that session.
For example, with http://tutorialspoint.com/file.htm;sessionid=12345, the session identifier is
attached as sessionid=12345 which can be accessed at the web server to identify the client.

URL rewriting is a better way to maintain sessions and works for the browsers when
they don't support cookies but here drawback is that you would have generate every URL
dynamically to assign a session ID though page is simple static HTML page.

The HttpSession Object:

Apart from the above mentioned three ways, servlet provides HttpSession Interface
which provides a way to identify a user across more than one page request or visit to a Web
site and to store information about that user.

The servlet container uses this interface to create a session between an HTTP client
and an HTTP server. The session persists for a specified time period, across more than one
connection or page request from the user. You would get HttpSession object by calling the
public method getSession() of HttpServletRequest, as below:

‘ HttpSession session = request.getSession();

You need to call request.getSession() before you send any document content to the
client. Here is a summary of the important methods available through HttpSession object:

S.N. Method & Description

1 public Object getAttribute(String name)

This method returns the object bound with the specified name in this session, or null if
no object is bound under the name.

public Enumeration getAttributeNames()

2 This method returns an Enumeration of String objects containing the names of all the
objects bound to this session.
public long getCreationTime()

3 This method returns the time when this session was created, measured in milliseconds
since midnight January 1, 1970 GMT.

4 public String getld()
This method returns a string containing the unique identifier assigned to this session.
public long getLastAccessedTime()

5 This method returns the last time the client sent a request associated with this session, as
the number of milliseconds since midnight January 1, 1970 GMT.
public int getMaxInactivelnterval()

6 This method returns the maximum time interval, in seconds, that the servlet container
will keep this session open between client accesses.

5 public void invalidate()
This method invalidates this session and unbinds any objects bound to it.
public boolean isNew(

8 This method returns true if the client does not yet know about the session or if the client
chooses not to join the session.

9 public void removeAttribute(String name)
This method removes the object bound with the specified name from this session.

10 public void setAttribute(String name, Object value)
This method binds an object to this session, using the name specified.
public void setMaxInactivelnterval(int interval)

11 This method specifies the time, in seconds, between client requests before the servlet

container will invalidate this session.

Session Tracking Example:

Vi du sau day cho phép nguoi sir dung nhap vao tén va phia server sé Iuu dir liéu nay

vao session data. Khi user lan thtr 2 truy nhap vao tng dung, tén caa user s& duoc ly ra tir dit
liéu cua session va hién thi lai. Ung dung ciing cho phép user click button dé reset toan bo
session da duoc tao:

package servlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class SessionTrack extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

HttpSession session = request.getSession(true);
if (request.getParameter("reset") != null) {
session.invalidate();
session = request.getSession(true);
}
// Get session creation time.
Date createTime = new Date(session.getCreationTime());
// Get last access time of this web page.
Date lastAccessTime = new Date(session.getlLastAccessedTime());

String uName = request.getParameter("username");

String userName ="";
String userNameKey = "userNameKey";

if (uUName != null) && (uName.length() > 0)) {
System.out.printIn("Putting user name: " + uName + " to session data...");
session.setAttribute(userNameKey, uName);

// Check if this is new comer on your web page.
String title = "Welcome Back to my website";
if (session.isNew()){
title = "Welcome to my website";
}else {
userName = (String)session.getAttribute(userNameKey);
System.out.printin("Got user name: " + userName + " from session data...");
title = "Welcome Back to my website
" +
"Session create time: " + createTime.toString() + "
" +
"Session last access: " + lastAccessTime.toString() + "
" +
"Stored user in session data: " + userName + "<p>-----
" +
"Please enter new user:";

response.setContentType("text/html");
response.setBufferSize(8192);

PrintWriter out = response.getWriter();

// then write the data of the response
out.printin("<html>" + "<head><title>Hello</title></head>");

// then write the data of the response
out.printin(
"<body bgcolor=\"#ffffff\">" + title
+ "<form method=\"get\" >"
//+ "<form method=\"get\" action=\"/hello_servlet/response\">"
+ "<input type=\"text\" name=\"username\" size=\"25\" value=\"" + userName +
II\II>II
+"<p></p>" + "<input type=\"submit\" value=\"Submit\">"
+"</form>");

out.printin(
"<form method=\"get\" >
+ "<input type=\"hidden\" + name=\"reset\" + value=\"true\" >"
//+ "<form method=\"get\" action=\"/hello_servlet/response\">"

Sau:

+ "<input type=\"submit\" value=\"Reset Session\">" + "</form>");

out.printin("</body></html>");
out.close();

}

Code 1: Quan ly session véi Servlet

Dich va chay ung dung. Lan dau truy nhap dén ung dung, trang web s& hién ra nhu

Welcome to my website

Submit

Reset Session

Nhap vao tén user va submit. Tir cac lan truy nhap vao tng dung sau do, trang web s&

hién ra cac thong tin vé session cling véi gia tri user name da nhap vao tir trugc:

Welcome Back to my website

Session create time: Fri Feb 06 13:45:09 ICT 2015
Session last access: Fri Feb 06 13:45:09 ICT 2015
Stored user in session data: Mr. Hoang

Please enter new user:

Mr. Hoang
Submit

ResetSession

User c6 thé click Reser Session dé x6a toan bo dix liéu thudc session hién tai.

Deleting Session Data:

When you are done with a user's session data, you have several options:

Remove a particular attribute: You can call public void removeAttribute(String
name) method to delete the value associated with a particular key.

Delete the whole session: You can call public void invalidate() method to discard an
entire session.

Setting Session timeout: You can call public void setMaxInactivelnterval(int
interval) method to set the timeout for a session individually.

= Log the user out: The servers that support servlets 2.4, you can call logout to log the
client out of the Web server and invalidate all sessions belonging to all the users.

= web.xml Configuration: If you are using Tomcat, apart from the above mentioned
methods, you can configure session time out in web.xml file as follows.

<session-config>
<session-timeout>15</session-timeout>
</session-config>

The timeout is expressed as minutes, and overrides the default timeout which is 30
minutes in Tomcat. The getMaxlInactivelnterval() method in a servlet returns the timeout
period for that session in seconds. So if your session is configured in web.xml for 15 minutes,
getMaxInactivelnterval() returns 900.

2.3.5 Diéu khién ludng xi¥ ly request

2.3.5.1 St dung RequestDispatcher

Mot ang dung web thuong gém nhiéu trang web tuong tng vai nhiéu servlet. Thiét ké
don gian 1a mdi request guri tir client browser s& duoc xir Iy bang mot servlet trén server va két
qua tra vé client browser 1a mot trang HTML. Tuy nhién, thiét ké tng dung web c6 thé tich
hop nhiéu servlet ¢é xu ly mot request gui 1én tir client browser. Trong vi du ung dung
my_servlet, request tir client browser duoc xir 1y dau tién tai servlet GreetingServlet va sau d6
duoc xur 1y tiép tai ResponseServlet.

Http request (path = /a) Servlet container

Servlet mapping (/a 2 A
Client Browser N pping (/) Servlet A

Http response (HTML page)

Http request (path = /a) Servlet container

Servlet] >A
Client Browser ervlet mapping (/a) Servlet A
J dispjtch (path = /b)
Servlet mapping (/b = B)
Http response (HTMIL page)

Hinh vé 14: Xir ly ludng Http request véi mat servlet va nhiéu servlet bing RequestDispatcher

Ngoai cach xtr ly ludng Http request bang cach sir dung ddi twong RequestDispatcher,
Java servlet cho phép tham gia diéu khién cac ludng ndy & mac hé thong (ma khéng can xir ly
& tirng servlet véi di can tap trung cho viéc xir Iy nghiép vu cua tng dung).

2.3.5.2 Dinh hwéng ludng tw dong khi c6 16

When a servlet throws an exception, the web container searches the configurations in
web.xml that use the exception-type element for a match with the thrown exception type. You
would have to use the error-page element in web.xml to specify the invocation of servlets in
response to certain exceptions or HTTP status codes.

Consider, you have an ErrorHandler servlet which would be called whenever there is
any defined exception or error. Following would be the entry created in web.xml.

<servlet>
<display-name>ErrorHandler</display-name>
<servlet-name>ErrorHandler</servlet-name>
<servlet-class>servlets.ErrorHandler</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>ErrorHandler</servlet-name>
<url-pattern>/error</url-pattern>

</servlet-mapping>

<!l-- error-code related error pages -->

<error-page>
<error-code>404</error-code>
<location>/error</location>

</error-page>

<error-page>
<error-code>403</error-code>
<location>/error</location>

</error-page>

<!-- exception-type related error pages -->
<error-page>
<exception-type>
javax.servlet.ServletException
</exception-type >
<location>/error</location>
</error-page>

<error-page>
<exception-type>java.lang.Exception</exception-type >
<location>/error</location>

</error-page>

Following are the points to be noted about above web.xml for Exception Handling:

= The servlet ErrorHandler is defined in usual way as any other servlet and configured
in web.xml.

= If there is any error with status code either 404 (Not Found) or 403 (Forbidden), then
ErrorHandler servlet would be called.

If the web application throws either ServletException or IOException, then the web
container invokes the /ErrorHandler servlet.

You can define different Error Handlers to handle different type of errors or
exceptions. Above example is very much generic and hope it serve the purpose to
explain you the basic concept.

Following is the Servlet Example that would be used as Error Handler in case of any

error or exception occurs with your any of the servlet defined. This example would give you
basic understanding of Exception Handling in Servlet, but you can write more sophisticated
filter applications using the same concept:

package servlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import java.util.*;
public class ErrorHandler extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// Analyze the servlet exception
Throwable throwable = (Throwable) request.getAttribute("javax.servlet.error.exception");
Integer statusCode = (Integer) request.getAttribute("javax.servlet.error.status_code");
String servletName = (String) request.getAttribute("javax.servlet.error.servlet_name");

if (servletName == null){
servletName = "Unknown";
}
String requestUri = (String) request.getAttribute("javax.servlet.error.request_uri");
if (requestUri == null){
requestUri = "Unknown";

}

// Set response content type
response.setContentType("text/html");

PrintWriter out = response.getWriter();
String title = "Error/Exception Information";
String docType = "<!doctype html public \"-//w3c//dtd html 4.0 " + "transitional//en\">\n";
out.printin(docType + "<htmI>\n" + "<head><title>" + title + "</title></head>\n" +
"<body bgcolor=\"#f0f0f0O\">\n");

if (throwable == null && statusCode == null){
out.printin("<h2>Error information is missing</h2>");
out.printIn("Please return to the <a href=\"" + response.encodeURL("http://localhost:8080/") +
"\">Home Page.");
lelse if (throwable == null){
out.printIn("The status code : " + statusCode);
lelsef{
out.printIn("<h2>Error information</h2>");
out.printIn("The status code : " + statusCode + "</br></br>");
out.printin("Servlet Name : " + servletName + "</br></br>");
out.printIn("Exception Type : " + throwable.getClass().getName() + "</br></br>");
out.printin("The request URI: " + requestUri + "

");
out.printin("The exception message: " + throwable.getMessage());

}
out.printIn("</body>");
out.printIn("</html>");
}
}

2.3.5.3 St dung bo loc (filter)

Servlet Filters are Java classes that can be used in Servlet Programming for the
following purposes:

= To intercept requests from a client before they access a resource at back end.
» To manipulate responses from server before they are sent back to the client.

There are are various types of filters suggested by the specifications:

= Authentication Filters.

= Data compression Filters.

= Encryption Filters.

= Filters that trigger resource access events.

= Image Conversion Filters.

= Logging and Auditing Filters.

= MIME-TYPE Chain Filters.

= Tokenizing Filters .

= XSL/T Filters That Transform XML Content.

Filters are deployed in the deployment descriptor file web.xml and then map to either
servlet names or URL patterns in your application's deployment descriptor.

When the web container starts up your web application, it creates an instance of each
filter that you have declared in the deployment descriptor. The filters execute in the order that
they are declared in the deployment descriptor.

Following is the Servlet Filter Example that would print the clients IP address and
current date time. This example would give you basic understanding of Servlet Filter, but you
can write more sophisticated filter applications using the same concept:

package servlets;

import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

public class LogFilter implements Filter {
public void init(FilterConfig config) throws ServletException {
// Get init parameter
String testParam = config.getInitParameter("test-param");

//Print the init parameter
System.out.printin("Test Param: " + testParam);

}

public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws java.io.lOException, ServletException {

// Get the IP address of client machine.
String ipAddress = request.getRemoteAddr();

// Log the IP address and current timestamp.
System.out.printin("IP "+ ipAddress + ", Time " + new Date().toString());

// Pass request back down the filter chain
chain.doFilter(request,response);

}

public void destroy() {

}
}

Filters are defined and then mapped to a URL or Servlet, in much the same way as
Servlet is defined and then mapped to a URL pattern. Create the following entry for filter tag
in the deployment descriptor file web.xml

<filter>
<filter-name>LogFilter</filter-name>
<filter-class>LogFilter</filter-class>
<init-param>
<param-name>test-param</param-name>
<param-value>Initialization Paramter</param-value>
</init-param>
</filter>
<filter-mapping>
<filter-name>LogFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

The above filter would apply to all the servlets because we specified /* in our
configuration. You can specicy a particular servlet path if you want to apply filter on few
servlets only. Now try to call any servlet in usual way and you would see generated log in
your web server log. You can use Log4J logger to log above log in a separate file.

Your web application may define several different filters with a specific purpose.
Consider, you define two filters AuthenFilter and LogFilter. Rest of the process would remain
as explained above except you need to create a different mapping as mentioned below:

<filter>
<filter-name>LogFilter</filter-name>
<filter-class>LogFilter</filter-class>
<init-param>
<param-name>test-param</param-name>
<param-value>Initialization Paramter</param-value>
</init-param>
</filter>

<filter>

<filter-name>AuthenFilter</filter-name>
<filter-class>AuthenFilter</filter-class>
<init-param>
<param-name>test-param</param-name>
<param-value>Initialization Paramter</param-value>
</init-param>
</filter>

<filter-mapping>
<filter-name>LogFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

<filter-mapping>
<filter-name>AuthenFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

The order of filter-mapping elements in web.xml determines the order in which the
web container applies the filter to the servlet. To reverse the order of the filter, you just need
to reverse the filter-mapping elements in the web.xml file. For example, above example
would apply LogFilter first and then it would apply AuthenFilter to any servlet but the
following example would reverse the order:

<filter-mapping>
<filter-name>AuthenFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

<filter-mapping>
<filter-name>LogFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

2.3.6 Truy nhdp co s¢ dir liu

2.3.6.1 Chuén bi méi trwong

St dung database MySQL:

» Cai dat co so dir ligu MySQL, tao co s¢ dir liéu emp, tao bang dir liéu employees, tao
user emp (password emp) va cap quyén truy nhap dén co so dir liéu emp. Bang dit
licu employees c6 thé duoc tao ra bang cac cau 1énh SQL nhu bén dudi

mysql> use emp;
mysql> create table employees
> (
->id int not null,
->age int not null,
-> first varchar (255),
-> last varchar (255)
->);
Query OK, 0 rows affected (0.08 sec)
mysql>

Tao cac dir liéu trong bang employees:

mysql> INSERT INTO employees VALUES (100, 18, 'Zara', 'Ali');
Query OK, 1 row affected (0.05 sec)

mysql> INSERT INTO employees VALUES (101, 25, '‘Mahnaz', 'Fatma');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO employees VALUES (102, 30, 'Zaid', 'Khan');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO employees VALUES (103, 28, 'Sumit', 'Mittal');
Query OK, 1 row affected (0.00 sec)

mysql>

Céu hinh thu vién JDBC cho Tomcat:

MAi co sé dit liéu hd tro JDBC déu c6 kém theo thu vién Java. Véi phién ban database

MySQL 5.6, file thu vién JDBC nam trong bo Connector.J 5.1 c6 tén 1a mysgl-connector-
java-5.1.34-bin jar. Bé Tomcat tim duoc thu vién ndy, chi can copy file jar vao thu myc lib
cua Tomcat.

2.3.6.2

Servlet DatabaseAccess

package servlets;

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import java.sqgl.*;
public class DatabaseAccess extends HttpServlet{

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// JDBC driver name and database URL
String JDBC_DRIVER="com.mysql.jdbc.Driver";
String DB_URL="jdbc:mysql://localhost/emp";

// Database credentials
String USER = "emp";
String PASS ="emp";

Connection conn = null;
Statement stmt = null;

// Set response content type
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Database Result";

String docType =

"<Idoctype html public \"-//w3c//dtd htm| 4.0 " +
"transitional//en\">\n";
out.printin(docType +
"<htmlI>\n" +
"<head><title>" + title + "</title></head>\n" +
"<body bgcolor=\"#f0fofo\">\n" +
"<h1 align=\"center\">" + title + "</h1>\n");

try{
// Register JDBC driver
Class.forName("com.mysql.jdbc.Driver");

// Open a connection
conn = DriverManager.getConnection(DB_URL,USER,PASS);

// Execute SQL query

stmt = conn.createStatement();

String sql;

sql = "SELECT id, first, last, age FROM Employees";
ResultSet rs = stmt.executeQuery(sql);

// Extract data from result set
while(rs.next()){
//Retrieve by column name
intid =rs.getint("id");
int age = rs.getInt("age");
String first = rs.getString("first");
String last = rs.getString("last");

//Display values
out.printIn("ID: " + id + "
");
out.printin(", Age: " + age + "
");
out.printIn(", First: " + first + "
");
out.printIn(", Last: " + last + "
");
}
out.printin("</body></htm|>");

// Clean-up environment
rs.close();
stmt.close();
conn.close();
}catch(SQLException se){
//Handle errors for JDBC
se.printStackTrace();
}catch(Exception e){
//Handle errors for Class.forName
e.printStackTrace();
Hinally{
//finally block used to close resources
try{
if(stmt!=null)
stmt.close();
}catch(SQLException se2){
}// nothing we can do
try{
if(conn!=null)
conn.close();
}catch(SQLException se){
se.printStackTrace();
}/end finally try

}//end try
}
}

Cap nhat file web.xml cho servlet nay:

<servlet>
<servlet-name>DatabaseAccess</servlet-name>
<servlet-class>servlets.DatabaseAccess</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>DatabaseAccess</servlet-name>
<url-pattern>/database</url-pattern>
</servlet-mapping>

Chay ng dung va truy nhap vao dia chi http://localhost:8080/my_servlet/database, két
qua trén trang web hién thi danh sach cac di liéu da duoc dua vao bang employees.

http://localhost:8080/my_servlet/database

Chwong 3. JSP

3.1 Tir Servlet dén JSP

Servlet cung cap du kha ning xay dung cac ung dung web dong phia server (nhitng gi

Java lam dugc thi Servlet cling lam dugc). Tuy nhién viéc tao giao dién tinh (trang HTML)
bang cach xay dung toan bd noi dung code HTML trong chuong trinh 14 rat phic tap. Khi can
thay d6i mot s diém nho trong giao dién web vén di khong lién quan dén xir ly logic caa tng
dung nhung van can thay d6i code va bién dich lai chuong trinh. Bac biét, dbi véi cac tng
dung web RIA (web dong ca phia client dua trén cac script chay trong browser) thi viéc tao
code script chira trong code HTML tir cac servlet 1a cuc ky phuc tap. Pay 1a 1y do can thiét
phai tach phan xir ly giao dién ra khoi phan xir Iy logic cua tng dung va JSP 1a mét giai phép.

3.1.1

Project my_jsp vdi Eclipse va Tomcat

Str dung Eclipse, tao project kiéu Dynamic Web Project dat tén 1a my_jsp va tao file

JSP véi ndi dung nhu bén dudi:

<html>
<head>
<title>Hello World</title>
</head>
<body>
<h1>Hello World!</h1>

<% out.printIn("Your IP address is " + request.getRemoteAddr()); %>
</body>
</html>

Chay server Tomcat va dung web browser truy nhap vao trang jsp nay tai dia chi

http://localhost:8080/my_jsp/hello.jsp, két qua nhan dugc 14

3.1.2

Hello World!

Your IP address is 127.0.0.1

Servlet Hello_JSP

Két qua chuong trinh khi chay véi hello.jsp hoan toan c6 thé dwoc thuc hién biang mot

servlet vai noi dung nhu bén dudi:

public class Hello JSP extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {
response.setContentType("text/html");
response.setBufferSize(8192);

PrintWriter out = response.getWriter();

out.printin("<htmlI>" + "<head><title>Hello World</title></head> +
"<body><h1>Hello World</h2>
");

out.printin("Your IP address is " + request.getRemoteAddr());

http://localhost:8080/my_jsp/hello.jsp

out.println("</body></htm|>");
out.close();
}
}

Code 2: Java Servlet dwoc tao ra tw dong tir trang JSP

Hon thé nita, dé y thay rang viéc chuyén ddi tir noi dung file JSP hello.jsp thanh
Servlet Hello_JSP.java c6 thé duoc thuc hién dua trén mot s6 qui tic chuan, khdng can co su
tham gia soan lai chuong trinh ctia con nguoi.

Thuc té xay ra 1a you write a JSP, but it becomes a servlet. The only way to really tell
what’s happening is to look at what the Container does to your JSP code. In other words, how
does the Container translate your JSP intoa servlet? Once you know where different JSP
elements land in the servlet’s class file, you’ll find it much easier to know how to structure
your JSP.

The servlet code above is not the real code generated by the Container—we simplified
it down to the essential parts. The Container-generated servlet file is, well, uglier. The real
generated servlet source code is slightly harder to read, but we will look at the real thing in a
few pages. For now, though, all we care about is where in the servlet class our JSP code
actually ends up.

Time to see the REAL generated servilet

We’ve been looking at a super-simplified version of the servlet the Container actually
creates from your JSP. There’s no need to look at the Container-generated code during
development, but you can use it to help learn. Once you’ve seen what the Container does with
the different elements of a JSP, you shouldn’t need to ever look at the Container-generated
Java source files. Some vendors won’t let you see the generated Java source, and keep only
the compiled .class files. Don’t be intimidated when you see parts of the API that you don’t
recognize. Most of the class and interface types are vendor-specific implementations you
shouldn’t care about.

Dé biét céc file servlet ma Tomcat tu dong tao ra dé & dau, hién thi muc Servers trong
Eclipse, tim dén Tomcat server va click chudt dap vao do dé hién thi thong tin chi tiét ciu
hinh server. Kiém tra muc Server path trong phan Server Locations.

hello.jsp @ Hello World)] *GreetingServlet.java B Tomcat v8.0 Server at localhost &2

g Overview

General Information ¥ Publishing
Specify the host name and other common settings.
b Timeouts
Server name: Tomcat v&.0 Server at localhost
Host name: localhost > Ports

Modify the server ports.
Runtime Envircnment: | Apache Tomcat vB.0

Configuration path: /Servers/Tomcat v8.0 Server at loca| | Browse... P‘or‘t Name
& Tomeat admin port
Open launch configuration & HTTR/1.1
. 2 AIP/13
* Server Locations
Specifytr {1.e. catalina.base) and deploy path. Server must be
published with no modules present to make changes.
® se workspace metadata (does not modify Tomcat installation)
. - . . b MIME Mappings
Use Tomcat installation (takes control of Tomcat installation)
Use custom lecation (does not modify Tomcat installation)
Server path: .mr:taclata"-..pluginz"—.crg.&clip:r:.wzt.Erzr'.-'r:r*c-.t.-ie...
Deploy path: | wtpwebapps Browse...
€
Overview | Modules
|_:_ Markers | [Properties ¥k Servers &2 E Data Source Explorer | B3 Snippets & Console = :)ﬁi? G {.ﬁ_:
4 El@ Tomcat 8.0 Server at local [Stopped, Republish]
T my_jsp [Synchronized] ~ double click here

T my_servlet [Republish]

Servlet duwgc Tomcat tu dong tao ra cho JSP hello.jsp ¢ noi dung nhu bén dudi:

/*

* Generated by the Jasper component of Apache Tomcat

* Version: Apache Tomcat/8.0.18

* Generated at: 2015-02-03 07:15:58 UTC

* Note: The last modified time of this file was set to

* the last modified time of the source file after

* generation to assist with modification tracking.

*/

package org.apache.jsp;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

public final class hello_jsp extends org.apache.jasper.runtime.HttpJspBase

implements org.apache.jasper.runtime.JspSourceDependent,

org.apache.jasper.runtime.JspSourcelmports {

private static final javax.servlet.jsp.JspFactory _jspxFactory =
javax.servlet.jsp.JspFactory.getDefaultFactory();

private static java.util. Map<java.lang.String,java.lang.Long>_jspx_dependants;

private static final java.util.Set<java.lang.String> _jspx_imports_packages;

private static final java.util.Set<java.lang.String> _jspx_imports_classes;

static {
_jspx_imports_packages = new java.util.HashSet<>();
_jspx_imports_packages.add("javax.servlet");
_jspx_imports_packages.add("javax.servlet.http");
_jspx_imports_packages.add("javax.servlet.jsp");
_jspx_imports_classes = null;

}

private javax.el.ExpressionFactory _el_expressionfactory;
private org.apache.tomcat.InstanceManager _jsp_instancemanager;

public java.util. Map<java.lang.String,java.lang.Long> getDependants() {
return _jspx_dependants;

}

public java.util.Set<java.lang.String> getPackagelmports() {
return _jspx_imports_packages;

}

public java.util.Set<java.lang.String> getClassiImports() {
return _jspx_imports_classes;

}

public void _jsplnit() {
_el_expressionfactory =
_jspxFactory.getlspApplicationContext(getServletConfig().getServletContext()).getExpressionFactory();
_jsp_instancemanager =
org.apache.jasper.runtime.lnstanceManagerFactory.getinstanceManager(getServletConfig());

}

public void _jspDestroy() {
}

public void _jspService(final javax.servlet.http.HttpServletRequest request, final
javax.servlet.http.HttpServletResponse response)
throws java.io.|lOException, javax.servlet.ServletException {

final java.lang.String _jspx_method = request.getMethod();

if (1"GET".equals(_jspx_method) && !"POST".equals(_jspx_method) &&
I"HEAD".equals(_jspx_method) &&
ljavax.servlet.DispatcherType.ERROR.equals(request.getDispatcherType())) {
response.sendError(HttpServletResponse.SC_METHOD_NOT_ALLOWED, "ISPs only permit GET POST
or HEAD");

return;

}

final javax.servlet.jsp.PageContext pageContext;
javax.servlet.http.HttpSession session = null;

final javax.servlet.ServletContext application;

final javax.servlet.ServletConfig config;
javax.servlet.jsp.JspWriter out = null;

final java.lang.Object page = this;
javax.servlet.jsp.JspWriter _jspx_out = null;
javax.servlet.jsp.PageContext _jspx_page_context = null;

try {

3.1.3

response.setContentType("text/html");

pageContext = _jspxFactory.getPageContext(this, request, response,
null, true, 8192, true);

_jspx_page_context = pageContext;

application = pageContext.getServletContext();

config = pageContext.getServletConfig();

session = pageContext.getSession();

out = pageContext.getOut();

_jspx_out = out;

out.write("<htmI>\r\n");
out.write("\t<head>\r\n");
out.write("\t\t<title>Hello World</title>\r\n");
out.write("\t</head>\r\n");
out.write("\t<body>\r\n");
out.write("\t\t<h1>Hello World!</h1>
\r\n");
out.write("\t\t");
out.printIin("Your IP address is " + request.getRemoteAddr());
out.write("\t\t\r\n");
out.write("\t</body>\r\n");
out.write(" </html>");
} catch (java.lang.Throwable t) {
if (!(t instanceof javax.servlet.jsp.SkipPageException)){
out = _jspx_out;
if (out != null && out.getBufferSize() = 0)
try {
if (response.isCommitted()) {
out.flush();
}else {
out.clearBuffer();
}
} catch (java.io.lOException e) {}
if (_jspx_page_context I= null) _jspx_page_context.handlePageException(t);
else throw new ServletException(t);
}
} finally {
_JjspxFactory.releasePageContext(_jspx_page_context);
}
}
}

Vong doi hoat dong cta JSP
(Bryan Basham, 2008) — trang 306:

Kim writes a jsp file, The Container “reads” the weboml (DD) for

and deploys it as this app, but doesn't do amything else with the
X . e _ -
part of a web app. -jsp file {until the first time it's requested). s ok :"r&"a?;:ﬂ:{ﬂ 5
h D { b venpet
['| 1 Web Corrtainer
| L
L
The client hits a link The Container tries to TRAMSLATE the _jsp an ervors HE
that asks for the _jsp. into _jova source code for a servlet class. JSF .:l in e phase
Ly
[

-l

request —y,
“._.,..-F"
H' 1

-

{ |

I‘ Web Container
|

The Container tries to COMPILE the
servlet _jova source into a class file.

Web Confainer

@ The Container LOADS the
newly-generated serviet class.
-]
=
/] MyJSP jsp.class
' Web Confainer
|
@ The Container instantiates the The object is now a full-fledged serviet,
serviet and causes the servlet's ready to accept client requests.
jspInit{} method to run.
[7}
) B
—— jspInit() \
Il Wy gsp P
[Web Container
I
The Container creates a new thread to Everything that happens after
handle this client's request. and the this is just plain old serviet
servlet's _jspService() methed runs. request-handling.

~

Y

-'-prsﬁ'-r'h'ce:[’}

Web Container

3.2 Xir giao dién véi JSP

3.2.1 JSP=HTML++
Diém manh nhat cua JSP chinh Ia kha ning tich hop toan bé md HTML. Mét trang

Eventually the serviet sends a
response back to the client (or
forwards the request to another
web app component).

HTML bt ky déu c6 thé duoc khai béo 1a mot JSP. N6i mét cach khéc, nhiing gi c6 thé 1am
giao dién web voi ma HTML thi ciing c6 thé 1am nhu vay véi JSP.

3.2.2 Xw dung Directives, Declarations, Scriptlets, and Expressions

In addition to the various HTML tags you can use within a JSP, there are several
unique structures that define a sort of JSP language. They are directives, declarations,

scriptlets, and expressions. In the simplest terms, they look like this:

<% @ this is a directive %>
<%! This is a declaration %>
<% this is a scriptlet %>

<%= this is an expression %>

Directive:

Trong 3 loai directive (Page, Include va Taglib), Include c6 thé dugc sir dung dé ghép
ndi cac phan giao dién trong mot trang web. The following example demonstrates using the
include directive to include a standard JSP header and footer in the main.jsp:

<%@ include file="header.jsp" %>
<p>content</p>
<%@ include file="footer.jsp" %>

Trong d6 header.jsp c6 ndi dung sau:

<html>

<head></head>

<body>
<%out.print("header"); %>

Va footer.jsp cé noi dung sau:

1.<%out.print("footer"); %>
2.</body>
3.</html>

Két qua chay chuong trinh:

@ http://localhost:8080/includeDirective/main.jsp &3

@ . http://localhost:8080/includeDirective/mainjsp v B
header
content

footer

Declarations & Scriptlets

Using declarations, JSP allows you to declare methods and variables in JSP pages.
Once they are in a JSP page, they are available to scriptlets and expressions throughout the
page. JSP declarations are placed between <%! and %> declaration delimiters. Since
declarations are used with expressions and scriptlets, 1 will introduce expressions and
scriptlets in the following sections, and then I will show you how declarations, scriptlets, and
expressions are used in a JSP page.

Scriptlets are blocks of Java code surrounded within the <% and %> delimiters to
create dynamic content. Listing 2-19 illustrates the usage of a declaration with a scriptlet and
expression. Listing 2-19. Usage of Declaration, Scriptlet, and Expression

<%!
public String hello() {
String msg = "Hello World";
return msg;

}

%>
Message from Scriptlet: <%hello();%>

Message from Expression: <%=hello() %>

Expressions

Expressions are similar to scriptlets, but they evaluate a regular Java expression and
return a result, which is a String or something convertible to a String, to the client as part of
the response. The general syntax is as follows:

‘ <%= expression %>

3.3 Truy nhap dén cac d6i twong cé san (implicit objects)

Céc trang JSP duoc ty dong chuyén ddi thanh céc servlet véi qui tic gitr nguyén phan
ma Java (Declaration, Scriplet va Expression) va chuyén phin code HTML vao cau lénh
out.write() (xem Code 2: Java Servlet duoc tao ra ty dong tir trang JSP). Phan ma Java c6 thé
truy nhap dén tat ca cac ddi twong duoc Container tao ra dé phuc vu servlet. Vi du cac dbi
tuong ServletRequest, ServletResponse, v.v.. Pay 1a cach thuc trao dbi thdng tin gitta phan xr
ly giao dién (bang JSP) vai phan xtr Iy logic tng dung (bang servlet).

A JSP page can access some specific objects through scripting variables. These objects
are provided by the JSP container and are called implicit objects. These implicit objects can
be accessed in scriptlets, in expressions, or as part of the EL expressions. (The EL expressions
are introduced in Chapter 3.) Table 2-5 lists the nine implicit objects with the corresponding
API.

Implicit Object Usage APl

application Accesses application-level cbjects servletContext
config Provides configuration information ServletConfig
exception Accesses error status J5PException

out Accesses the JSP ocutput stream J5PWriter

page Provides a reference to the current JSP Object
pageContext Accesses the JSP container PageContext
request Provides access to the client request ServletRequest
response Provides access to the JSP response ServletResponse
session Shares information across client requests Ht tpSession

Tham khao phuong thic _jspService() cua servlet dugc tao ra ty dong tu trang JSP
(Code 2: Java Servlet dugc tao ra tu dong tir trang JSP) c6 thé thdy su xuit hién cua cac ddi
tuong c6 san nay.

request and response

The request variable is an instance of HttpservietRequest and the response variable is an instance
of HittpServietResponse, both of which you learned about in detail in Chapter 3. Anything you can
do with a request in a Servlet you can also do in a JSP, including getting request parameters,
getting and setting attributes, and even reading from the response body. The same rules you

learned about in the last chapter apply here. However, there are some restrictions on what you
can do with the response object in a JSP. These restrictions are not contract restrictions, so
they are not enforced at compile time. Instead, they are enforced at run time because violating
them could cause unexpected behavior or even errors. For example, you should not call
getwriter OF getOutputStream because the JSP is already writing to the response output. You also
should not set the content type or character encoding, flush or reset the buffer, or change the
buffer size. These are all things that the JSP does, and if your code does them, too, it can
cause problems.

session

This variable is an instance of Httpsession. You learn more about sessions in the next
chapter. Remember from the previous section that the page directive has a session attribute that
defaults to true. This is why the session variable is available in the previous code example and
will be available by default in all of your JSPs. If you set the page directive’s session attribute to
false, the session variable in the JSP is not defined and cannot be used.

out

The Jspwriter instance out is available for you to use in all your JSPs. It is a writer, just like
what you get from calling the getwriter method on HttpservietResponse. If for some reason you need
to write directly to the response, you should use the out variable. However, in most cases you
can simply use an expression or write text or HTML content in the JSP.

application

This is an instance of the servietcontext interface. Recall from Chapter 3 that this interface
gives you access to the configuration of the web application as a whole, including all the
context init parameters. Why this variable was named application instead Of context OF servietContext IS
a mystery.

config

The config variable is an instance of the servietconfig interface. Unlike the application
variable, its name actually reflects what it is. As you learned in Chapter 3, you can use this
object to access the configuration of the JSP Servlet, such as the Servlet init parameters.

pageContext

This object, an instance of the pagecontext class, provides several convenience methods
for getting request attributes and session attributes, accessing the request and response,
including other files, and forwarding the request. You will probably never need to use this
class within a JSP. It will, however, come in handy when you write custom JSP tags in
Chapter 8.

page

The page variable is an interesting object to examine. It is an instance of java.lang.Object,
which initially makes it seem unuseful. However, it essentially is the this variable from the JSP
Servlet object. So, you could cast it to serviet and use methods defined on the serviet interface. It

is also a javax.servlet.jsp.JspPage (WhiCh extends Servlet) and a javax.servlet.jsp.HttpJspPage (WhiCh extends
JspPage), SO you could cast it to either of those and use methods defined on those interfaces. In
reality, you will probably never have a reason to use this variable. It may be useful if other
JSP scripting languages are ever supported. However, the JSP 2.3 specification, section 1.8.3
note “a,” says that page is always a synonym for this when the scripting language is Java. Thus,
anything you can do with page (such as get the Servlet name or access methods or instance
variables you defined in a JSP declaration) you can also do with this.

exception

This is the variable that was missing from the previous code example. Recall from the
previous section that you can specify as true the isErrorPage attribute on the page directive to
indicate that the JSP’s purpose is to handle errors. Doing so makes the exception variable
available for use within the JSP. Because the default value for isErrorPage IS false and you have
not used it anywhere, the exception Variable has not been defined in any JSPs you created. If you
create a JSP with isErrorPage Set t0 true, the implicCit exception variable, a Throwable, is defined
automatically.

Chuong trinh vi du

Now that you understand the available implicit variables and their purposes, you
should explore this more by writing some JSP code that uses the implicit variables. In your
project, create a greeting jsp file in the web root, and place the following code in it

<% @ page contentType="text/html;charset=UTF-8" language="java" %>
<%!
private static final String DEFAULT_USER = "Guest";
%>
<%
String user = request.getParameter("user");
if(user == null) user = DEFAULT_USER;
%>
<IDOCTYPE html>
<html>
<head>
<title>Hello User Application</title>
</head>
<body>
Hello, <%= user %>!

<form action="greeting.jsp" method="POST">
Enter your name:

<input type="text" name="user" />

<input type="submit" value="Submit" />
</form>
</body>
</html>

Compare this to the code you wrote in Helloserviet java for the Hello-User project in the
previous chapter. There’s much less to it, but it accomplishes the same thing. Notice the use
of a declaration to define the perauLT user variable, a scriptlet to look for the user request
parameter and default it if it is not set, and an expression to output the value of the user variable.
Now compile and debug this code and go to http://localhost:8080/hello-world/greeting.jsp IN your browser.

Try entering a name in the input field and clicking the Submit button — the post variable is
detected and used. Now try going to http:/localhost:8080/hello-world/greeting.jsp?user=Allison, and you
should see that the query parameter is also detected and used. You are encouraged to explore
the Java code that Tomcat translated your JSP into.

Another thing you did in the Hello-User project was create a Servlet to demonstrate
using multiplevalue parameters. This, too, can be replicated using JSPs. Create a file in your
project web root named checkboxes.jsp

<% @ page contentType="text/html;charset=UTF-8" language="java" %>
<IDOCTYPE html>
<html>
<head>
<title>Hello User Application</title>
</head>
<body>
<form action="checkboxesSubmit.jsp" method="POST">
Select the fruits you like to eat:

<input type="checkbox" name="fruit" value="Banana" /> Banana

<input type="checkbox" name="fruit" value="Apple" /> Apple

<input type="checkbox" name="fruit" value="Orange" /> Orange

<input type="checkbox" name="fruit" value="Guava" /> Guava

<input type="checkbox" name="fruit" value="Kiwi" /> Kiwi

<input type="submit" value="Submit" />
</form>
</body>
</html>

This file replicates the output of the doget method in the MultivalueParameterServiet java file
from the Hello-User project. Next, create checkboxesSubmit.jsp

<% @ page contentType="text/html;charset=UTF-8" language="java" %>
<%
String[] fruits = request.getParameterValues("fruit");
%>
<IDOCTYPE html>
<html>
<head>
<title>Hello User Application</title>
</head>
<body>
<h2>Your Selections</h2>
<%
if(fruits == null) {
%>You did not select any fruits.
<% } else {
%><%
for(String fruit : fruits) {
out.printin("" + fruit + "</Ii>");
}
%>
<%}
%>
</body>
</html>

This file replicates the logic and output of the dorost method from the
MultivalueParameterServiet Class. Notice how the bold code jumps in and out of scriptlets, using Java
only where the logic requirements demand and leaving the scriptlets to use straight output
instead of writing with the implicit out variable. The exception is inside the for loop, which
demonstrates one use case for the out variable. This could have just as easily been replaced
With 9><%= fruit %><% t0 accomplish the same thing. Now compile and debug the project
and go to http://localhost:8080/hello-world/checkboxes.jsp iN your browser. You should see a page like that
in Figure 4-1. Experiment with different combinations of the check boxes, and verify that it
behaves identically to the Hello-User project in Chapter 3. Try replacing the use of out in the
for loop With %><%= fruit %><%. WWhen you recompile and run the project again, the output
should not change.

Finally, create a file named contextParameters.jsp t0 explore the use of the application implicit
variable and the retrieval of context init parameters. Alternatively, use the file already in the
Hello-User-JSP project.

<% @ page contentType="text/html;charset=UTF-8" language="java" %>
<IDOCTYPE html>

<html>

<head>

<title>Hello User Application</title>

</head>

<body>

settingOne: <%= application.getInitParameter("settingOne") %>,
settingTwo: <%= application.getInitParameter("settingTwo") %>
</body>

</html>

Also, you need to have some context init parameters defined in your deployment
descriptor, just like in Chapter 3:

<context-param>
<param-name>settingOne</param-name>
<param-value>foo</param-value>
</context-param>

<context-param>
<param-name>settingTwo</param-name>
<param-value>bar</param-value>
</context-param>

Now compile, debug, and navigate to http:/localhost:8080/hello-world/contextParameters.jsp. AS With
the Servlet-based Hello-User project, you should see the values of the context init parameters

hitp:#/localhost:80807hello-world/checkbe © ~ 2 © || [&] Hello UserApplication i

File Edit Wiew Favorites Tools Help

Select the fruits you like to eat:
[] Banana

] Apple

[] Orange

[] Guava

[Kiwi

Submit

Chuong trinh quan ly session bang servlet nhu trong Code 1: Quan ly session V&i
Servlet khi chuyén sang JSP s& nhu sau:

<html>
<head>
<title>Session Tracking by JSP</title>
</head>
<body>

<% @page import="java.util. *" %>

<%
boolean firstVisit = false;
String uName = request.getParameter("username");

if (uName != null) && (uName.length() > 0)) {
System.out.printin("Putting user name: " + uName + " to session data...");
session.setAttribute("userNameKey", uName);

session = request.getSession(true);
if (session.isNew()) firstVisit = true;

if (request.getParameter("reset") != null) {
session.invalidate();
session = request.getSession(true);
firstVisit = true;

if (firstVisit) {
%>
Welcome to my website
<form method="get">
<input type="text" name="username" size="25" ><p>
<input type="submit" value="Submit">
</form>
<% }else { %>
Welcome Back to my website

Session create time: <%= new Date(session.getCreationTime()) %>

Session last access: <%= new Date(session.getLastAccessedTime()) %>

Stored user in session data: <%= (String)session.getAttribute("userNameKey")%><p>-----

Please enter new user:
<form method="get">
<input type="text" name="username" size="25" value="<%= uName %>"><p>
<input type="submit" value="Submit">
</form>
<form method="get" >

<input type="hidden" name="reset" value="true" >
<input type="submit" value="Reset Session">
</form>
<% } %>
</body>
</html>

Code 3: Quan ly Session bang dbi tweng co sin session trong JSP

3.4 Custom Tag Library

Nhuoc diém cua JSP 1a tron 13n cac tag xur ly format hién thi cling véi cac tag chuong
trinh. Didu nay din dén nguoi xu ly giao dién c6 thé gay ra céc 16i chuong trinh va nguoc lai,
ngudi viét code chwong trinh lai 1am hong giao dién. Déi véi cac hé théng wng dung web 16n,
cbng viéc xay dung giao dién web va xir ly chuong trinh Java thuong duoc tach riéng cho
nhung nhén vién c6 chuyén mén khac nhau. Giai phdp ma JSP cung cap la str dung céc tag
tuwong trng vai cac ma lénh Java.

Ching ta d3 1am quen v&i mot s6 tag chuan caa JSP nhu <jsp:include>,
<jsp:forward>, v.v.. Thyc té 1a dang sau cé4c tag nay chinh la cac dong lénh Java di dugc xay
dung trudc. Va khi nguoi xay dung giao dién web cheén cac tag nay vao trang JSP thi tuong
duong véi viéc chen cdc ma Iénh Java tuwong tng vao trang JSP.

Standard Tag Library (JSTL)

The JavaServer Pages Standard Tag Library (JSTL) is a collection of useful JSP tags
which encapsulates core functionality common to many JSP applications. JSTL has support
for common, structural tasks such as iteration and conditionals, tags for manipulating XML
documents, internationalization tags, and SQL tags. It also provides a framework for
integrating existing custom tags with JSTL tags.

The JSTL tags can be classified, according to their functions, into following JSTL tag
library groups that can be used when creating a JSP page:

= Core Tags

= Formatting tags
= SQL tags

= XML tags

= JSTL Functions
Chd nay can md ta van tit cach st dung tag lib thay cho code Java cuing mot vai vi du

Xéay dung Tag Library

Phat trién y tuong sir dung tag thay cho méa lénh Java, JSP cung cép giai phép cho
phép tu dinh nghia cac tag dé ma 1énh Java khdng xuét hién trong céc trang JSP phc tap.

G6i API javax.servlet.jsp.tagext.* cung cp thu vién ham cho phép xay dung céc Java
class ma c6 thé thao tac trén cac tag cua trang JSP. Dua trén thu vién nay, ngudi ding cé thé
tu tao ra cac tag xu ly trang JSP theo cach riéng cua minh,

Hello tag

Consider you want to define a custom tag named <ex:Hello> and you want to use it in
the following fashion without a body:

‘ <ex:Hello />

To create a custom JSP tag, you must first create a Java class that acts as a tag handler.
So let us create HelloTag class as follows:

package my_jsp;

import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.*;

public class HelloTag extends SimpleTagSupport {

public void doTag() throws JspException, IOException {
JspWriter out = getJspContext().getOut();
out.printin("Hello Custom Tag!");
}
}

Above code has simple coding where doTag() method takes the current JspContext
object using getJspContext() method and uses it to send "Hello Custom Tag!" to the current
JspWriter object.

Let us compile above class and copy it in a directory available in environment variable
CLASSPATH. Finally create following tag library file: <Tomcat-Installation-
Directory>webapps\ROOT\WEB-INF\custom.tld.

<taglib>
<tlib-version>1.0</tlib-version>
<jsp-version>2.0</jsp-version>
<short-name>Example TLD</short-name>
<tag>
<name>Hello</name>
<tag-class>my_jsp.HelloTag</tag-class>
<body-content>empty</body-content>
</tag>
</taglib>

Try to call above JSP and this should produce following result:

‘ Hello Custom Tag!

Accessing the Tag Body:

You can include a message in the body of the tag as you have seen with standard tags.
Consider you want to define a custom tag named <ex:Hello> and you want to use it in the
following fashion with a body:

<ex:Hello>
This is message body
</ex:Hello>

Let us make following changes in above our tag code to process the body of the tag:

package com.tutorialspoint;

import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.*;

public class HelloTag extends SimpleTagSupport {

StringWriter sw = new StringWriter();
public void doTag()
throws JspException, IOException
{
getJspBody().invoke(sw);
getJspContext().getOut().printin(sw.toString());
}

}

In this case, the output resulting from the invocation is first captured into a
StringWriter before being written to the JspWriter associated with the tag. Now accordingly
we need to change TLD file as follows:

<taglib>
<tlib-version>1.0</tlib-version>
<jsp-version>2.0</jsp-version>
<short-name>Example TLD with Body</short-name>
<tag>
<name>Hello</name>
<tag-class>com.tutorialspoint.HelloTag</tag-class>
<body-content>scriptless</body-content>
</tag>
</taglib>

Now let us call above tag with proper body as follows:

<%@ taglib prefix="ex" uri="WEB-INF/custom.tld"%>
<html>
<head>
<title>A sample custom tag</title>
</head>
<body>
<ex:Hello>
This is message body
</ex:Hello>
</body>
</html>

This will produce following result:

‘ This is message body

Custom Tag Attributes:

You can use various attributes along with your custom tags. To accept an attribute
value, a custom tag class needs to implement setter methods, identical to JavaBean setter
methods as shown below:

package com.tutorialspoint;

import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.*;

public class HelloTag extends SimpleTagSupport {
private String message;

public void setMessage(String msg) {
this.message = msg;

}

StringWriter sw = new StringWriter();

public void doTag()
throws JspException, IOException
{
if (message != null) {
/* Use message from attribute */
JspWriter out = getJspContext().getOut();
out.println(message);
}
else {
/* use message from the body */
get)JspBody().invoke(sw);
getJspContext().getOut().printin(sw.toString());

}

The attribute's name is "message", so the setter method is setMessage(). Now let us
add this attribute in TLD file using <attribute> element as follows:

<taglib>
<tlib-version>1.0</tlib-version>
<jsp-version>2.0</jsp-version>
<short-name>Example TLD with Body</short-name>
<tag>
<name>Hello</name>
<tag-class>com.tutorialspoint.HelloTag</tag-class>
<body-content>scriptless</body-content>
<attribute>
<name>message</name>
</attribute>
</tag>
</taglib>

Now let us try following JSP with message attribute as follows:

<%@ taglib prefix="ex" uri="WEB-INF/custom.tld"%>
<html>
<head>
<title>A sample custom tag</title>
</head>
<body>
<ex:Hello message="This is custom tag" />
</body>
</html>

This will produce following result:

‘ This is custom tag

Hope above example makes sense for you. It would be worth to note that you can
include following properties for an attribute:

Property Purpose

The name element defines the name of an attribute. Each

name attribute name must be unique for a particular tag.

. This specifies if this attribute is required or optional. It would be
required i

false for optional.

rtexprvalue Declares if a runtime expression value for a tag attribute is valid
tvpe Defines the Java class-type of this attribute. By default it is
P assumed as String
description Informational description can be provided.
f Declares if this attribute value should be treated as a
ragment

JspFragment.

Following is the example to specify properties related to an attribute:

<attribute>
<name>attribute_name</name>
<required>false</required>
<type>java.util.Date</type>
<fragment>false</fragment>
</attribute>

<attribute>
<name>attribute_namel</name>
<required>false</required>
<type>java.util.Boolean</type>
<fragment>false</fragment>

</attribute>

<attribute>
<name>attribute_name2</name>
<required>true</required>
<type>java.util.Date</type>

</attribute>

Chwong 4. Struts - Java Web Framework

4.1 Pitvinde

Can c¢6 mot doan phan tich nhuoc diém cua Servlet & JSP khi xay dung céc ung dung
Web dé dan dat dén nhu cau can cd cac framework chuan.

(Layka, 2014) trang 159:

Why Use a Framework?

While Java EE does a great job of standardizing the enterprise infrastructure and
providing an application model, there are few major problems associated with it.

= Interacting directly with the Java EE components often results in massive boilerplate
code and even code redundancy.

= You have to write code for dealing with common business domain problems.

= You have to write code for solving architectural domain problems.

You could roll your own framework to address the problems associated with building
Java EE based web applications using OO patterns and Java EE patterns. But writing an in-
house framework entails efforts that are orthogonal to the business goals of the application; in
addition, the in-house framework is unlikely to be upgraded, and the new versions of the in-
house framework will never see the sun, unlike mainstream frameworks that continuously
evolve instead of falling into architectural entropy. With that in mind, it’s time to look at
some of the available JVM-based web frameworks (see Table 3-25). This table is far from
exhaustive; a myriad of frameworks are available, but this book will cover the most successful
JVM-based web frameworks listed in the table.

(Layka, 2014) trang 158:

As developers gather more experience, they start discovering generic objects that can
be used over and over, and patterns begin to emerge. Once you have a collection of such
generic objects, a framework begins to emerge. A framework is a collection of generic objects
and other supporting classes that provide the infrastructure for application development.
Frameworks are, essentially, a collection of design patterns guarded by the basic framework
principles discussed next. A Java framework uses two types of patterns.

= OO patterns
= Java EE patterns

A framework uses OO patterns for its own construction to address the architectural
problem domain, such as extensibility, maintainability, reusability, performance, and
scalability. Both OO patterns and Java EE patterns address the business problem domain
areas, such as processing requests, authentication, validation, session management, and view
management to name a few. .Frameworks address these two major architectural and business

problem areas by providing patterns based generic objects and supporting classes, closely
guarded by the following key principles:

= Configurability: Configurability is the ability of the framework to be able to use the
metadata to alter the behavior of the framework.

= |Inversion of control: In traditional programming style, the problem domain code
controls the flow of the application execution. Inversion of control refers to the
technique where reusable code controls the execution of the problem domain code,
thus controlling the flow of the application execution.

= Loose coupling: This principle refers to the independence of the collaborating classes
in the framework with which each collaborating class can be altered without
influencing the other collaborating class.

= Separation of concerns: This principle refers to the need to classify the problem
domain areas and deal with them in an isolated manner so that the concerns of one
problem area do not influence the concerns of another problem area. The multitiered
Java EE architecture we saw in Chapter 1 is driven by the principle of the separation
of concerns.

= Automating common functionalities: A framework provides mechanisms for
automated solutions to the mundane functionalities of the domain.

4.2 Model - View - Control (MVC) Framework
(Layka, 2014) trang 86:

The motivation for the Model-View-Controller (MVC) pattern has been around since
the conception of object-oriented programming. Prior to MVC, the browser directly accessed
JSP pages. In other words, JSP pages handled user requests directly. This was called a Model-
1 architecture, as illustrated in Figure 2-31. A Model-1 architecture exhibited decentralized
application control, which led to a tightly coupled and brittle presentation tier.

Request

Response

A Model-2 architecture for designing JSP pages is in actuality the MVC pattern
applied to web applications. MVC originated in Smalltalk and has since made its way to Java
community. Figure 2-32 shows the Model-2 (in other words, MV C) architecture. In Model-2,
a controller handles the user request instead of another JSP page. The controller is
implemented as a servlet. The following steps are executed when the user submits the request:

1. The controller servlet handles the user’s request.

2. The controller servlet instantiates the appropriate JavaBeans based on the request.

3. The controller servlet communicates with the middle tier or directly to the database to
retrieve the required data.

4. The controller sets the JavaBeans in one of the following contexts: request, session, or
application.

5. The controller dispatches the request to the next view based on the request URL.
6. The view uses the JavaBeans from step 4 to display data.

1-Request 3 —set results
via DAO I
6-Response
4-Dispatchto
View
5-View uses
Model

MVC

4.3 Cau hinh méi trwong

= Tomcat: sir dung Tomcat 7 hoac Tomcat 8 déu duoc.

= Struts: Download the latest version of Struts2 binaries from
http://struts.apache.org/download.cgi (cac vi du chay tbt véi Struts 2.3.20)

= Copy céc file lib can thiét cua Struts vao thu muc Lib cua Tomcat:

commons-fileupload-x.y.z.jar
commons-io-x.y.z.jar
commons-lang-x.y.jar
commons-logging-x.y.z.jar
commons-logging-api-x.y.jar
freemarker-x.y.z.jar
javassist-.xy.z.GA
ognl-x.y.z.jar
struts2-core-x.y.z.jar
xwork-core.x.y.z.jar

4.4 Hello World véi Struts

Eclipse: tao project kiéu “Dynamic Web Project” nhu véi JSP hay Servlet, tiép theo 1a
thiét 1ap cac thanh phan giao dién bang JSP. Cudi cing l1a két ni céc giao dién nay theo logic
Xt ly ctaa wng dung.

4.4.1 Xay dwng giao dién vdi JSP:

File giao dién dau tién 14 index.jsp gdm mot form chira text box dé nhap tén nguoi

ding vao tham s6 “name” va button “Say Hello” dé gui dir liéu nay 1én server.

<%@ page contentType="text/html; charset=UTF-8" %>
<% @ taglib prefix="s" uri="/struts-tags" %>

http://struts.apache.org/download.cgi

<html>
<head>
<title>Name Collector</title>
</head>
<body>
<h4>Enter your name </h4>
<s:form action="hello">
<s:textfield name="name" label="Your name"/>
<s:submit/>
</s:form>
</body>
</html>

File giao dién thur 2 1a HelloWorld.jsp ¢ chirc nang nhan dir liéu gui 1én tir index.jsp

va hién thi théng tin nay.

<% @ page contentType="text/html; charset=UTF-8" %>
<% @ taglib prefix="s" uri="/struts-tags" %>
<html>
<head>
<title>HelloWorld</title>
</head>
<body>
<h3>Custom Greeting Page</h3>
<h4><s:property value="customGreeting"/></h4>
</body>
</html>

Thém mot file JSP NoName.jsp dé hién thi thong tin trong truong hop ngudi ding

khéng nhap vao tén ma submit Ién server luon.

4.4.2

<% @ page contentType="text/html; charset=UTF-8" %>

<html>
<head>
<title>Hello World</title>
</head>
<body>
Please input your name!
</body>
</html>

Két ndi cdc file giao dién theo logic ctia trhg dung:

Logic ctua ung dung rit don gian. Ngudi sir dung bat dau truy nhap ang dung véi trang

JSP index.jsp. Sau khi nhap tén minh vao text box va click buttton “Say Hello”, trang JSP
Helloworld s& dugc hién thi cing véi tén ngudi st dung di nhap vao. Truong hop nguoi
ding quén nhap vao tén ma submit ngay thi trang NoName.jsp s& duoc hién thi.

Ludng két ndi cac file giao dién JSP duoc Struts mé ta trong file ciu hinh struts.xml.

M3i ing dung web (vi du my_struts) can khai bao mot file struts.xml dt trong thu muc WEB-
IND/classes. Tao file struts.xml cho irng dung my_struts véi ndi dung nhu sau:

truy

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.0//EN"
"http://struts.apache.org/dtds/struts-2.0.dtd">

<struts>
<constant name="struts.devMode" value="true" />

<package name="test" extends="struts-default">
<action name="index">
<result >/index.jsp</result>
</action>
<action name="hello"
class="my_struts.HelloWorldAction"
method="execute">
<result name="success">/HelloWorld.jsp</result>
<result name="no name">/NoName.jsp</result>
</action>
</package>
</struts>

Ludng két ndi giao dién bén trén mo ta 2 action “index” va “hello” twong wng véi 2
nhap tai cac dia chi “http://localhost:8080/my_struts/index” va

“http://localhost:8080/my_struts/hello”. Véi action “index”, request s& duoc chuyén ngay dén
trang giao dién index.jsp dé xt ly va hién thi két qua. Véi action “hello”, request dugc chuyén
cho mot Java class (goi la mot Controller) my_struts.HelloWorldAction xu ly théng qua
phuong thirc execute(). TUy vao két qua xir Iy ciia phuwong thirc ndy ma trang web hién thi két
qua s€ la HelloWorld.jsp hoac NoName.jsp.

Struts dugc xay dung dua trén cong nghé Java Servlet nén ngoai file struts.xml, cin c6

file cAu hinh web.xml dat trong thu muc Web-INF. Struts cai dat mét filter dac biét co tén
org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter c¢6 chic ning tiép
nhan tat ca cac request guri ¢én (ng dung va dya vao ciu hinh ludng xt ly struts.xml ma
chuyén tiép request nay dén céc class xir 1y twong @ng.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
xsi:schemalocation="http://java.sun.com/xmi/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
id="WebApp_ID" version="3.0">

<display-name>Struts 2</display-name>

<filter>
<filter-name>struts2</filter-name>
<filter-class>
org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFilter
</filter-class>
</filter>

<filter-mapping>
<filter-name>struts2</filter-name>

<url-pattern>/*</url-pattern>
</filter-mapping>
</web-app>

4.4.3 Tao Controller class HelloWorldAction

Controller class 1a mot hodc nhiéu class Java cai dat dé xur ly toan bo phan logic cua
tng dung. V& ban chat, nd phan tich céc théng tin va tao ra mot “bo chuyén mach” dé phdi
hop véi ludng két néi cac file giao dién. Trong tng dung HelloWorld, Controller class don
gian nhu sau.

package my_struts;

public class HelloWorldAction{
private String name;
private String customGreeting;

public String execute() throws Exception {
setCustomGreeting("Hi! my name is Struts Action Conrol... Hello " + getName());
if (name.length() > 0) return "success";
return "no name";

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getCustomGreeting() {
return customGreeting;

}

public void setCustomGreeting(String customGreeting) {
this.customGreeting = customGreeting;

}

Chay Tomcat va truy nhap vao dia chi http://localhost:8080/my_struts/index véi hai
truong hop (nhap day du tén hoic khdng nhap tén) s& thiy struts diéu phdi céc file giao dién
JSP theo dung thiét ké.

4.5 Bén trong Struts
(BROWN, DAVIS, & STANLICK, 2008) — trang 15

In this section, we’ll detail processing a request within the framework. As you’ll see,
the framework has more than just its MVC components. We said that Struts 2 provides a
cleaner implementation of MVC. These clean lines are only possible with the help of a few
other key architectural components that participate in processing every request. Chief among
these are the interceptors, OGNL, and the ValueStack. We’ll learn what each of these does in

http://localhost:8080/my_struts/index

the following walkthrough of Struts 2 request processing. Figure 1.4 shows the request
processing workflow.

/ invoke action finished \
i

Interceptors

L J

invoke result |
Action Result

Figure 1.4 Struts 2 request

processing uses interceptors

) /" that fire before and after the
g action and result.

The first thing we should consider is that the workflow of figure 1.4 still obeys the
simpler MVC view of the framework that we saw earlier. In the figure, the FilterDispatcher
has already done its controller work by selecting the appropriate action to handle the request.
The figure demonstrates what really happens when the action is invoked by the controller. As
you can see, a few extra parts are added to the MVC basics. We’ll explain in the next
paragraphs how the interceptors and the ActionContext aid the action and result in their
processing of the request.

Figure 1.4 introduces the following new Struts 2 components: ActionContext,
interceptors, the ValueStack, and OGNL. This diagram goes a long way toward showing what
really happens in Struts 2. You could say that everything we’ll discuss in this book is shown
in this diagram. As interceptors come first in the request-processing cycle, we’ll start with
them. The name seems obvious, but what exactly do they intercept?

4.5.1 Interceptors

You may have noticed, while studying figure 1.4, that there is a stack of interceptors
in front of the action. The invocation of the action must travel through this stack. This is a key
part of the Struts 2 framework. We’ll devote an entire chapter to this important component
later in the book. At this time, it is enough to understand that most every action will have a
stack of interceptors associated with it. These interceptors are invoked both before and after
the action, though we should note that they actually fire after the result has executed.
Interceptors don’t necessarily have to do something both times they fire, but they do have the

opportunity. Some interceptors only do work before the action has been executed, and others
only do work afterward. The important thing is that the interceptor allows common, cross-
cutting tasks to be defined in clean, reusable components that you can keep separate from
your action code.

What kinds of work should be done in interceptors? Logging is a good example.
Logging should be done with the invocation of every action, but it probably shouldn’t be put
in the action itself. Why? Because it’s not part of the action’s own unit of work. It’s more
administrative, overhead if you will. Earlier, we charged a framework with the responsibility
of providing built-in functional solutions to common domain tasks such as data validation,
type conversion, and file uploads. Struts 2 uses interceptors to do this type of work. While
these tasks are important, they’re not specifically related to the action logic of the request.
Struts 2 uses interceptors to both separate and reuse these cross-cutting concerns. Interceptors
play a huge role in the Struts 2 framework. And while you probably won’t spend a large
percentage of your time writing interceptors, most developers will find that many tasks are
perfectly solved with custom interceptors. As we said, we’ll devote all of chapter 4 to
exploring this core component.

4.5.2 The ValueStack & OGNL

While interceptors may not absorb a lot of your daily development energies, the
ValueStack and OGNL will be constantly on your mind. In a nutshell, the ValueStack is a
storage area that holds all of the data associated with the processing of a request. You could
think of it as a piece of scratch paper where the framework does its work while solving the
problems of request processing. Rather than passing the data around, Struts 2 keeps it in a
convenient, central location—the ValueStack.

OGNL is the tool that allows us to access the data we put in that central repository.
More specifically, it is an expression language that allows you to reference and manipulate the
data on the ValueStack. Developers new to Struts 2 probably ask more questions about the
ValueStack and OGNL than anything else. If you’re coming from Struts 1, you’ll find that
these are a couple of the more exotic features of the new framework. Due to this, and the
sheer importance of this duo, we’ll treat them carefully throughout the book. In particular,
chapters 5 and 6 describe the detailed function of these two framework components.

The tricky, and powerful, thing about the ValueStack and OGNL is that they don’t
belong to any of the individual framework components. Looking back to figure 1.4, note that
both interceptors and results can use OGNL to target values on the ValueStack. The data in
the ValueStack follows the request processing through all phases; it slices through the whole
length of the framework. It can do this because it is stored in a ThreadLocal context called the
ActionContext.

The ActionContext contains all of the data that makes up the context in which an
action occurs. This includes the ValueStack but also includes stuff the framework itself will
use internally, such as the request, session, and application maps from the Servlet API. You
can access these objects yourself if you like; we’ll see how later in the book. For now, we just

want to focus on the ActionContext as the ThreadLocal home of the ValueStack. The use of
ThreadLocal makes the ActionContext, and thus the ValueStack, accessible from anywhere in
the same thread of execution.

Since Struts 2’s processing of each request occurs in a single thread, the VValueStack is
available from any point in the framework’s handling of a request. Typically, it is considered
bad form to obtain the contents of the ActionContext yourself. The framework provides many
elegant ways to interact with that data without actually touching the ActionContext, or the
ValueStack, yourself. Primarily, you’ll use OGNL to do this. OGNL is used in many places in
the framework to reference and manipulate data in the ValueStack. For instance, you’ll use
OGNL to bind HTML form fields to data objects on the ValueStack for data transfer, and
you’ll use OGNL to pull data into the rendering of your JSPs and other result types. At this
point, you just need to understand that the ValueStack is where your data is stored while you
work with it, and that OGNL is the expression language that you, and the framework, use to
target this data from various parts of the request-processing cycle.

4.5.3 Hello World lam viéc thé nao
(BROWN, DAVIS, & STANLICK, 2008) —trang 35

You might still have questions about how the data gets from the front to the back of
this process. Let’s trace the path of data as it comes into, flows through, and ultimately exits
the HelloWorld application. First, let’s clear up some potential confusion regarding the
location of data in the framework. In chapter 1, we learned that the framework provides
something called the valueStack for storing all of the domain data during the processing of a
request. We also said that the framework uses a powerful expression language, oGNL, to
reference and manipulate that data from various regions of the framework. But, as we’ve just
learned, the action itself holds the domain data. In the case of the HelloWorld action, that data
is held on JavaBeans properties exposed on the action itself. So, what gives? In short, both are
true. The data is both stored in the action and in the valueStack. Here’s how. First, domain
data is always stored in the action. We’ll see variants on this, but it’s essentially true. This is
great because it allows convenient access to data from the action’s execute() method. So
that the rest of the framework can access the data, the action object itself is placed on the
ValueStack.

Form Rendered by NameCollector,jsp

=form action="HelloWorld.action" =
=input type="text"
name="name" />
<input type="submit"/= E

</ form= E jizjr

1
|

\ ValueStack

\‘ HelloWorld Action

String name
String customGreeting

i/
!

HelloWorld,jsp /
Custom Greeting Page

=5:property value="customGreeting"/>

ﬁ::F'

The mechanics of the valueStack are such that all properties of the action will then
be exposed as toplevel properties of the valueStack itself and, thus, accessible via oGNL.
Figure 2.7 demonstrates how this works with the Hello-World action as an example. As
figure 2.7 shows, the action holds the data, giving its own Java code convenient access. At the
same time, the framework makes the properties of the action available on the valueStack so
that other regions of the framework can access the data as well. In terms of our HelloWorld
application, thetwo most important places this occurs are on the incoming form and the
outgoing result page. In the case of the incoming request, the form field name attribute is
interpreted as an OGNL expression. The expression is used to target a property on the
ValueStack; in this case, the name property from our action. The value from the form field is
automatically moved onto that property by the framework. On the other end, the result JSP
pulls data off the customGreeting property by likewise using an OGNL expression, inside a
tag, to reference a property on the ValueStack. Obviously, this complicated process needs
more than a quick sketch. We’ll cover it fully, particularly in chapters 5 and 6.

That gives us as much as we need to know at this point. We’ve seen how to declare
actions and results. We’ve also learned a bit about how the data moves through the
framework. You might’ve noticed that we didn’t declare any interceptors. Despite the
importance of interceptors, the HelloWorld application declares none of them. It avoids
declaring interceptors itself by using the default interceptor stack provided by the framework.
This is common practice.

4.6 Lam viéc véi Structs action

(BROWN, DAVIS, & STANLICK, 2008) — trang 44

4.6.1 What does an action do?

Actions do three things. First, as you probably understand by now, an action’s most
important role, from the perspective of the framework’s architecture, is encapsulating the
actual work to be done for a given request. The second major role is to serve as a data carrier
in the framework’s automatic transfer of data from the request to the view. Finally, the action
must assist the framework in determining which result should render the view that’ll be
returned in the request response. Let’s see how the action component fulfills each of these
various roles.

By the way, we’re going to demonstrate our points in the coming paragraphs with
examples from the HelloWorld application from chapter 2. But don’t worry; we’ll start
building the real-world Struts 2 Portfolio in a few pages.

4.6.2 Actions encapsulate the Unit Of Work

Earlier in this book, we saw that the action fulfills the role of the mvc model for the
framework. One of the central responsibilities of this role is the containment of business
logic; actions use the execute() method for this purpose. The code inside this method should
concern itself only with the logic of the work associated with the request. The following code
snippet, from the previous chapter’s HelloWorld application, shows the work done by the
HellowWorldAction.

public String execute() {
setCustomGreeting(GREETING + getName());
return "SUCCESS";

}

The action’s work is to build a customized greeting for the user. As we can see, this
action’s execute() method does little else than build this greeting. In this case, the business
logic amounts to little more than a concatenation. If it were much more complex, we’d
probably have bumped that logic out to a business component and injected that component
into the action. The use of dependency injection, which helps keep code such as actions clean
and decoupled, is supported by the framework. We’ll learn some techniques that utilize the
framework’s Spring integration for injecting these components later in the book. For now, just
keep in mind that our actions hold the business logic, or at least the entry point to the business
logic, and they should keep that logic as pure and brief as possible.

4.6.3 Actions provide locus for data transfer

Being the model component of the framework also means that the action is expected
to carry the data around. While you might think this would make actions more complicated, it
actually makes them cleaner. Since the data is held local to the action, it’s always
conveniently available during the execution of the business logic. There might be a bunch of
JavaBeans properties adding lines of code to the action, but when the execute() method
references the data in those properties, the proximity of the data makes that code all the more
succinct.

Listing 3.1, also from HelloworldAction, shows the code that allows that action to
carry request data.

private String name;

public String getName() {

return name;

}

public void setName(String name) {
this.name = name;

}

private String customGreeting;

public String getCustomGreeting()

{

return customGreeting;

}

public void setCustomGreeting(String customGreeting){
this.customGreeting = customGreeting;

}

The action merely implements JavaBeans properties for each piece of data that it
wishes to carry. We saw this in action with the HelloWorld application. Request parameters
from the form are moved to properties that have matching names. As we saw, the framework
does this automatically. In this case, the name parameter from the name collection form will
be set on the name property. In addition to receiving the incoming data from the request, these
JavaBeans properties on the action will also expose the data to the result. The Helloworld
action’s logic sets the custom greeting on the customGreeting property, which makes it
available to the result as well.

In addition to these simple JavaBeans properties, there are a couple of other
techniques for using the action as a data transfer object. We’ll examine these alternatives later
in this chapter, and will also examine the mechanisms by which the actual data transfer
occurs. For now, we just want to recognize that the action serves as a centralized data transfer
object that can be used to make the application data available in all tiers of the framework.

The use of actions as data transfer objects should probably ring some alarms in the
minds of alert Struts 1 developers. In Struts 1, there’s only one instance of a given action
class. If this were still true, we couldn’t use the action object itself as a data carrier for the
request. In a multithreaded environment, such as a web application, it’d be problematic to
store data in instance fields as we’ve seen. Struts 2 solves this problem by creating a new
instance of an action for each request that maps to it. This fundamental difference allows
Struts 2 objects to exist as dedicated data transfer objects for each request.

4.6.4 Actions return control string for result routing

The final duty of an action component is to return a control string that selects the
result that should be rendered. Previous frameworks passed routing objects into the entry
method of the action. Returning a control string eliminates the need for these objects,
resulting in a cleaner signature and an action that is less coupled to specific routing code. The
value of the return string must match the name of the desired result as configured in the

declarative architecture. For instance, the HelloworldAction returns the string **SUCCESS". As
you can see from our XML declaration, success is the name of the one of the result
components.

<action name="HelloWorld" class="manning.chapterOne.HelloWorld">
<result name="SUCCESS">/chapterTwo/HelloWorld.jsp</result>
<result name="ERROR">/chapterTwo/Error.jsp</result>

</action>

The HelloWorld application has a simple logic for determining which result it will
choose. In fact, it’ll always choose the **success* result. Most real-world actions will have a
more complex determination process, and the result choices will almost always include some
sort of error result to handle problems that might occur during the action‘s interaction with the
model. Regardless of the complexity, actions must ultimately return a string that maps to one
of the result components available for rendering the view for that action.

You should now realize what an action does, but before we design one, we need to
create the packages to contain them. In the next section, we’ll see how to organize our actions
into packages and take our first glimpse at the Struts 2 Portfolio application, the main sample
application for this book.

4.7 Xirly giao dién: UI Tags & Results
(BROWN, DAVIS, & STANLICK, 2008) —trang 130

In part 2, we learned how the core of the framework processes each request. In
particular, we learned how to write actions that contain the logic for each request, wrap that
action logic with a stack of the appropriate interceptors, and take advantage of the
framework’s powerful data transfer and type conversion mechanisms. Though we’ve been
using JSP pages to render simple views for our actions, we haven’t gone into any of the
details of the view layer. We now enter the part of the book that focuses on the view layer.

In Struts 2, the MVC view concerns are encapsulated in the result component. We’ve
already become somewhat familiar with the result component even though we’ve said nothing
regarding its details. In fact, actually developing results will be at least as rare as developing
your own interceptors. Most of your development work will amount to little more than using
built-in result types to hit JSP pages and Velocity templates. The built-in result types will
handle the most common view-layer technologies, so you’ll probably go through a lot of code
before you find yourself writing your own. Nonetheless, we’ll provide a detailed account of
working directly with results in chapter 8. For now, we’re going to focus on the Struts 2 tag
libraries because, while secondary to the result component itself, they’re the tools you’ll have
in hand for most of your development efforts. The most common view-layer technologies are
probably JSP, Velocity, and FreeMarker. While each of these has its own tags or macros, the
Struts 2 framework provides a high-level tag API that you can use on all three rendering
platforms. In addition to being a portable tag API, these Struts 2 tags bring a lot to the table
functionally. You’ll find all of the features of any recently minted tag set, and more.

The Struts 2 tag libraries are divided into two groups: general-purpose tags and Ul
component tags. We’ll start, in chapter 6, with the general-purpose tags. These tags provide
all sorts of things from conditional logic to VValueStack manipulation to i18n help. We’ll show
you how the tags work, including an overview of their syntax and using OGNL to reference
values on the ValueStack. We’ll even include a primer on the most important parts of the
OGNL expression language as used in the context of tags. The Ul component tags, which
we’ll introduce in chapter 7, are perhaps the most impressive part of the Struts 2 tags. These
tags not only generate HTML form fields, but wrap those fields in layers of functionality that
tap into all of the framework’s various features. And if you need to customize the HTML
output of a given Ul-oriented tag, such as a form tag, you can change its HTML source
template and thus change the way it renders across all uses, enabling reusable customization.
The full richness of the Ul components can’t be captured in a couple of sentences, but we
think you’ll find them alluring after reading about them.

4.7.1 MGt s6 cdu triic bén trong ctia Struts lién quan dén View

Before we talk about the details of how Struts 2 tags can help you dynamically pipe
data into the rendering of your pages, let’s talk about where that data comes from. While we
focused on the data moving into the framework in the previous chapter, we’ll now focus on
the data leaving the framework. When a request hits the framework, one of the first things
Struts 2 does is create the objects that’ll store all the important data for the request. If we’re
talking about your application’s domain-specific data, which is the data that you’ll most
frequently access with your tags, it’ll be stored in the valueStack. But processing a request
requires more than just your application’s domain data. Other, more infrastructural, data must
be stored also. All of this data, along with the valueStack itself, is stored in something called
the ActionContext.

4.7.1.1 The ActionContext and OGNL

In the previous chapter, we used oGNL expressions to bind form field names to specific
property locations on objects such as our action object. We already know that our action
object is placed on something called the valuestack and that the OGNL expressions target
properties on that stack object. In reality, oGNL expressions can resolve against any of a set of
objects. The valueStack is just one of these objects, the default one. This wider set of objects
against which ocNL expressions can choose to resolve is called the ActionContext. We’ll now
see how oGNL chooses which object to resolve against, as well as what other objects are
available for accessing with oGNL.

The ActionContext contains all of the data available to the framework’s processing
of the request, including things ranging from application data to session- or application-
scoped maps. All of your applicationspecific data, such as properties exposed on your action,
will be held in the valueStack, one of the objects in the ActionContext. All OGNL expressions
must resolve against one of the objects contained in the ActionContext. By default, the
valueStack Will be the one chosen for oGgNL resolution, but you can specifically name one of
the others, such as the session map, if you like.

The ActionContext is a key behind-the-scenes player in the Struts 2 framework. If
you’ve worked with other web application frameworks, particularly Struts 1, then you
might be asking, “Why do | need an ActionContext? Why have you made my life more
complicated?” We’ve been trying to emphasize that the Struts 2 framework strives

toward a clean MVC implementation. The ActionContext helps clean things up by
providing the notion of a context for the execution of an action. By context we mean a
simple container for all the important data and resources that surround the execution

of a given action. A good example of the type of data we’re talking about is the map of
parameters from the request, or a map of session attributes from the Servlet Container.

In Struts 1, most of these resources were accessed via the Servlet stuff handed

into the execution of every action. We’ve already seen how clean the Struts 2 action

object has become; it has no parameters in its method signature to tie it to any APIs

that might have little to do with its task. So, really, your life is much less complicated,
though at first it might not seem so.

Before we show you all of the specific things that the ActionContext holds, we need
to discuss OGNL integration. As we’ve seen, OGNL expressions target properties on specific
objects. The resolution of each OGNL expression requires a root object against

which resolution of references will begin. Consider the following OGNL expression:
user.account.balance

Here we’re targeting the balance property on the account object on the user object.
But where’s the user object located? We must define an initial object upon which we’ll
locate the user object itself. Every time you use an OGNL expression, you need to indicate
which object the expression should start its resolution against. In Struts 2, each

OGNL expression must choose its initial object from those contained in the Action-
Context. Figure 6.1 shows the ActionContext and the objects it contains, any of which
you can point your OGNL resolution toward.

As you can see, the ActionContext is full of juicy treasures. The most important of
these is the ValueStack. As we’ve said, the ValueStack holds your application’s

domain-specific data for a given action invocation. For instance, if you’re updating a

student, you’ll expect to find that student data on the ValueStack. We’ll divulge more
of the inner workings of the ValueStack in a moment. The other objects are all maps
of important sets of data. Each of them has a name that indicates its purpose and

should be familiar to seasoned Java web application developers, as they correspond to
specific concepts from the Servlet API. For more information on where the data in

these sets comes from, we recommend the Java Servlet Specification. The contents of

each of these objects is summarized in table 6.1.
ActionContext

ValueStack parameters application

& @ @&

session attr request

= . — - - Figure 6.1 The RectionContext holds

(] all the important data objects pertaining to
[] a given action invocation; OGNL can target
any of them.

Table 6.1 The names and contents of the objects and maps in the ActionContext

MName Description

parameters Map of request parameters for this request
request Map of request-scoped attributes
session Map of session-scoped attributes
application | Map of application-scoped attributes

attr Returns first occurrence of attribute occurring in page, request,
session, or application scope, in that order

Valu=Stack Contains all the application-domain—specific data for the request

The parameters object is a map of the request parameters associated with the
request being processed—the parameters submitted by the form, in other words.

The application object isa map of the application attributes. The request and
session objects are also maps of request and session attributes. By attribute we mean
the Servlet API concept of an attribute. Attributes allow you to store arbitrary objects,
associated with a name, in these respective scopes. Objects stored in application

scope are accessible to all requests coming to the application. Objects stored in session
scope are accessible to all requests of a particular session, and so forth. Common

usage includes storing a user object in the session to indicate a logged-in user

across multiple requests. The attr object is a special map that looks for attributes in
the following locations, in sequence: page, request, session, and application scope.

Now let’s look at how we choose which object from the ActionContext our OGNL will resolve against.

4.7.1.2 The ValueStack: a virtual object

Back to that default root object of the ActionContext. Understanding the ValueStack
is critical to understanding the way data moves through the Struts 2 framework. By
now, you’ve got most of what you need. We’ve seen the ValueStack in action. When

Struts 2 receives a request, it immediately creates an ActionContext, a ValueStack

and an action object. As a carrier of application data, the action object is quickly

placed on the ValueStack so that its properties will be accessible, via OGNL, to the far
reaches of the framework.

First, these will receive the automatic data transfer from the incoming request
parameters. As we saw in chapter 4, this occurs because the params interceptor sets
those parameters on properties exposed on the ValueStack, upon which the action
object sits. While other things, such as the model of the ModeIDriven interface, may
also be placed on the stack, what all data on the ValueStack has in common is that it’s
all specific to the application’s domain. In MVC terms, the ValueStack is the request’s
view of the application’s model data. There are no infrastructural objects, such as

Servlet API or Struts 2 objects, on the ValueStack. The action is only there because of
its role as domain data carrier; it’s not there because of its action logic.

There’s only one tricky bit about the ValueStack. The ValueStack pretends to be

a single object when OGNL expressions are resolved against it. This virtual object
contains all the properties of all the objects that’ve been placed on the stack. If multiple
occurrences of the same property exist, those lowest down in the stack are hidden

by the uppermost occurrence of a similarly named property. Figure 6.2 shows a
ValueStack with several objects on it.

As you can see in figure 6.2, references to a given property resolve to the highest
occurrence of that property in the stack. While this may seem complicated, it’s actually
not. As with most Struts 2 features, the flexibility and power to address complex

use cases is there, but the common user can remain ignorant of such details.

Let’s examine figure 6.2. As usual, the action object itself has been placed on the

stack first. Then, a model object was added to the stack. This most likely has occurred
because the action implements Mode IDriven. Sometime after that, another object,

apparently some sort of random-number-making bean, was added to the stack. By bean
we simply mean a Java object that either serves as a data carrier or as a utility-providing

ValueStack
myRandomBean
5 =
OGML EL
double randomNum;
age /(' 4
name — myModel
randomMNum T T double age; 1
) String name;
id . String password;),
T~ myAction
— p ﬁ
int id;
String name: Figure 6.2 The ValusStackls

the default object against which
all OGNL expressions are resolved.

h

object. In other words, it’s usually just some object whose properties you might want to
access from your tags with OGNL expressions.

At present, we just want to see how the ValueStack appears as a single virtual

object to the OGNL expressions resolving against it. In figure 6.2, we have four simple
expressions. Each targets a top-level property. Behind the scenes, OGNL will resolve

each of these expressions by asking the ValueStack if it has a property such as, for
instance, name. The ValueStack will always return the highest-level occurrence of the
name property in its stack of objects. In this case, the action object has a name property,
but that property will never be accessed as long as the model object’s name property

sits on top of it.

Just so you don’t worry about it, we might as well discuss how that bean showed up on

top of the stack. Prior to this point, we’ve just had stuff automatically placed on the
ValueStack by the framework. So how did the bean get there? There are many ways to
add a bean to the stack. Many of the most common ways occur within the tags that we’ll
soon cover. For instance, the push tag lets you push any bean you like onto the stack. You
might do such a thing just before you wanted to reference that bean’s data or methods

from later tags. We’ll demonstrate this with sample code when we cover those tags.

With a clear view of where the data is and how to get to it, it’s time to get back to

the Struts 2 tags that are the focus of this chapter, and are the means of pulling data

from the ActionContext and ValueStack into the dynamic rendering of your view

layer pages.

4.7.2 Struts Ul tags

The Struts 2 tag API provides the functionality to dynamically create robust web pages
by leveraging conditional rendering and integration of data from your application’s
domain model found on the ValueStack. Struts 2 comes with many different types of
Definition

When Java developers talk about beans in the context of view technologies, such as
JSPs, they frequently mean something different than just a Java object that meets
the JavaBeans standard. While these beans are most likely good JavaBeans as well,
they don’t have to be. The usage in this context more directly refers to the fact that
the bean is a Java object that exposes data and/or utility methods for use in JSP tags
and the like. Many developers call any object exposed like this a “bean.”

This nomenclature is a historical artifact. In the past, expression languages used in

tags couldn’t call methods. Thus, they could only retrieve data from an object if it
were exposed as a JavaBean property. Since the OGNL expression language allows
you to call methods directly, you could completely ignore JavaBeans conventions and
still have data and utility methods exposed to your tags for use while rendering the
page. However, in order to keep your JSP pages free of complexity, we strongly recommend
following JavaBeans conventions and avoiding expression language method
invocation as long as possible.

Licensed to Dan A German <dgerman@indiana.edu>

138 CHAPTER 6 Building a view: tags

tags. For organizational purposes, they can be broken into four categories: data tags,
control-flow tags, Ul tags, and miscellaneous tags. Since they are a complex topic all to
themselves, we’ll leave the Ul tags for chapter 7. This chapter examines the other

three categories.

Data tags focus on ways to extract data from the ValueStack and/or set values in

the ValueStack. Control-flow tags give you the tools to conditionally alter the flow of
the rendering process; they can even test values on the ValueStack. The miscellaneous
tags are a set of tags that don’t quite fit into the other categories. These leftover

tags include such useful functionality as managing URL rendering and internationalization
of text. Before we get started, we need to make some general remarks about

the conventions that are applied across the usage of all Struts 2 tag APIs.

4.7.3 Hién thi Result én View

This chapter wraps up part 3. If you recall from the early chapters, the result is the
MVC view component of the Struts 2 framework. As the central figure of the view, you
might be wondering why we started with two chapters on the Struts 2 tag API and left
the result for last. Easy. For common development practice, you don’t need to know
much about the result component itself. In fact, if you use JSP pages for your results,
you don’t even need to know that the framework supports many different types of
results, because the default result type supports JSPs. But the framework comes with
support for many different kinds of results, and you can write your own results as

well. This chapter explores the details of this important Struts 2 component.

In order to make sure you know what they are and how they work, we start by

building a custom result that demonstrates a technique for developing Ajax applications
on the Struts 2 platform. Seeing how the framework can easily be adapted

to return nontraditional results, such as those required by Ajax clients, serves as a

perfect demonstration of the flexibility of the result component. It both teaches

you the internals of results and gives you an example of Struts 2 Ajax development.

After that, we go on to tour the built-in results that the framework provides for your
convenience. These include the default result that supports JSP pages, as well as alternative
page-rendering options such as Velocity or FreeMarker templates.

Let’s start by refreshing ourselves on the Struts 2 architecture and the role played

by results in that architecture.

In a classic web application, these view concerns are generally equivalent to creating

an HTML page that’s sent back to the client. The intelligent defaults of the framework
are in perfect tune with this usage. By default, the framework uses a result type that
works with JSPs to render these response pages. This result, the dispatcher result,
makes all the ValueStack data available to the executing JSP page. With access to that
data, the JSP can render a dynamic HTML page.

Thanks to the intelligent defaults, we’ve been happily using JSPs from our earliest
HelloWorld example, all the while oblivious to the existence of a variety of result

types. The following snippet shows how easy it is to use JSPs under the default settings
of the framework:

<action name="PortfolioHomePage" class=". . . PortfolioHomePage'>
<result>/chapterEight/PortfolioHomePage. jsp</result>

</action>

DEFINITION

Licensed to Dan A German <dgerman@indiana.edu>

204 CHAPTER 8 Results in detail

As the snippet demonstrates, you can get your JSPs up and running without knowing
anything about what a result is. All you need to know is that a result is the element into

which you stuff the location of your JSP page. And that’s about all you need to know as
long as your project stays the JSP course.

But what if you want to use Velocity or FreeMarker templates to render your HTML
pages? Or what if you want to redirect to another URL rather than rendering a page

for the client? These alternatives, which also follow the general request and response
patterns of a classic web application, are completely supported by the built-in result
types that come with the framework. Starting in section 8.2, we’ll provide a tour of
these commonly used results. If all you want to do is switch from JSPs to FreeMarker or
Velocity, or redirect to another URL instead of rendering the HTML page yourself, you
can skip ahead to the reference portion of this chapter.

If you want, however, to see how you can adapt results to nonstandard patterns of

usage, such as the nonclassic patterns of Ajax applications, then stick around.

P —
Browser Client
b
b

I 1
f \
Request | | Response

]
' HTML
Page

Struts 2 Application /
.
MyAction [MyResult
b -

Figure 8.1 Classic web applications return full
HTML page responses to the client.

As we mentioned, a classic web application returns full HTML page responses to
the client. Figure 8.1 illustrates this pattern.

In figure 8.1, the client makes a request that maps to some action. This action,
most likely, takes some piece of request data, conducts some business logic, then
exposes the subsequent domain data on

the ValueStack. The action then passes

control to a result that renders a full

HTML page, using the prepared data, to

build the new HTML page. The key thing

here is that the response is a full HTML

page, which the client browser uses to

rerender its entire window. The response

sent back to the client in figure 8.1 is

probably rendered by a JSP under the

default dispatcher result type. As we’ve

seen, the framework makes this classic

pattern of usage easy.

On the other hand, Ajax applications

do something entirely different. Instead
of requesting full HTML pages, they only
want data. This data can come in many
forms. Some Ajax applications want
HTML fragments as their responses.
Some want XML or JSON responses. In
short, the content of an Ajax response
can be in a variety of formats. Regardless
of their differences, they do share one
distinct commonality: none of them want
a full HTML page. Figure 8.2 illustrates a

typical Ajax request and response cycle.

1 Ajax Cliont .
in Browser

]

| i
Requast | | Responss

] 1
I| [ML |50 et
\
|I I'.

| |
|

Struts 2 Application | '.
[My#Action [MyResult]

Fleure 8.2 Ajax applications expect only data,
such as JSON or XML, in the response.

When the Ajax client receives the response, it won’t cause the browser to rerender
the entire HTML page. On the contrary, it carefully examines the data serialized in the

XML or JSON and uses that data to make targeted updates to the affected regions of
the current browser page. This is a different kind of response. Luckily, Struts 2 can easily handle this with the

flexibility of its result component.

4.8 Lam viéc v¢&i Interceptors
(BROWN, DAVIS, & STANLICK, 2008) — trang 75

4.8.1 Why intercept requests?

Earlier in this book, we described Struts 2 as a second-generation mvc framework. We
said that this new framework leveraged the lessons learned by the first generation of mvc-
based frameworks to implement a super-clean architecture. Interceptors play a crucial role in
allowing the framework to achieve such a high level of separation of concerns. In this section,
we’ll take a closer look at how interceptors provide a powerful tool for encapsulating the
kinds of tasks that have traditionally been an architectural thorn in the developer’s side.

Cleaning up the MVC

From an architectural point of view, interceptors have immensely improved the level
of separation we can achieve when trying to isolate the various concerns of our web
applications. In particular, interceptors remove cross-cutting tasks from our action
components. When we try to describe the kinds of tasks that interceptors implement, we
usually say something like cross-cutting, or preprocessing and postprocessing. These terms
may sound vague now, but they won’t by the time we finish this chapter.

Logging is a typical cross-cutting concern. In the past, you might’ve had a logging
statement in each of your actions. While this seemed a natural place for placing a logging
statement, it’s not a part of the action’s interaction with the model. In reality, logging is
administrative stuff that we want done for every request that the system processes. We call
this cross-cutting because it’s not specific to a single action. It cuts across a whole range of
actions. As software engineers, we should instantly see this as an opportunity to raise the task

to a higher layer that can sit above, or in front of, any number of requests that require logging.
The bottom line is that we have the opportunity to remove the logging from the action, thus
creating cleaner separation of our mvc concerns.

Some of the tasks undertaken by interceptors are more easily understood as being
preprocessing or postprocessing tasks. These are still technically cross-cutting; we
recommend not worrying about the semantics of these terms. We present these new terms
mostly to give you some ideas about the specific types of tasks handled by interceptors.

A good example of a preprocessing task would be data transfer, which we’re already
familiar with. This task is achieved with the params interceptor. Nearly every action will need
to have some data transferred from the request parameters onto its domain-specific properties.
This must be done before the action fires, and can be seen as mere preparation for the actual
work of the action. From this aloof perspective, we can call it a preprocessing task. This is
perfect for an interceptor. Again, this increases the purity of the action component by
removing code that can’t be strictly seen as part of a specific action’s core work.

No matter whether we call the task cross-cutting or preprocessing, the conceptual
mechanics of interceptors are clear. Instead of having a simple controller invoking an action
directly, we now have a component that sits between the controller and the action. In Struts 2,
no action is invoked in isolation. The invocation of an action is a layered process that always
includes the execution of a stack of interceptors prior to and after the actual execution of the
action itself. Rather than invoke the action’s execute() method directly, the framework
creates an object called an Actioninvocation that encapsulates the action and all of the
interceptors that have been configured to fire before and after that action executes. Figure 4.1
illustrates the encapsulation of the entire action execution process in the Actionlinvocation
class.

Actionlnvocation

- » Action
o =
AR
202 § 2|2
] @ a Figure4.1 ActionInvocation

&

Result encapsulates the execution of an
action with its associated
interceptors and results.

As you can see in figure 4.1, the invocation of an action must first travel through the
stack of interceptors associated with that action. Here we’ve presented a simplified version of
the defaultStack. The defaultStack includes such tasks as file uploading and transferring
request parameters onto our action. Figure 4.1 represents the normal workflow; none of the
interceptors have diverted the invocation. This action will ultimately execute and return a
control string that selects the appropriate result. After the result executes, each of the
interceptors, in reverse order, gets a chance to do some postprocessing work. As we’ll see, the

interceptors have access to the action and other contextual values. This allows them to be
aware of what’s happening in the processing.

For instance, they can examine the control string returned from the action to see what
result was chosen. One of the powerful functional aspects of interceptors is their ability to
alter the workflow of the invocation. As we noted, figure 4.1 depicts an instance where none
of the interceptors has intervened in the workflow, thus allowing the action to execute and
determine which result should render the view. Sometimes, one of the interceptors will
determine that the action shouldn’t execute. In these cases, the interceptor can halt the
workflow by itself returning a control string. Take the workflow interceptor, for example. As
we’ve seen, this interceptor does two things. First, it invokes the validate() method on the
action, if the action has implemented the validateable interface. Next, it checks for the
presence of error messages on the action. If errors are present, it returns a control string and,
thus, stops further execution. The action will never fire. The next interceptor in the stack
won’t even be invoked. By returning the control string itself, the interceptor causes control to
return back up the chain, giving each interceptor above the chance to do some postprocessing.
Finally, the result that matches the returned control string will render the view. In the case of
the workflow interceptor that has found error messages on the action, the control string is
“input, which typically maps back to the form page that submitted the invalid data.

As you might suspect, the details of this invocation process are thorny. In fact, they
involve a bit of recursion. As with all recursion, it’ll seem harmless once we look at the
details, which we’ll see shortly. But first we need to talk about the benefits we gain from
using interceptors.

Reaping the benefits

Layering always makes our software cleaner, which helps with readability and testing
and also provides flexibility. Once we’ve broken these cross-cutting, preprocessing, and
postprocessing tasks into manageable units, we can do cool stuff with them. The two primary
benefits we gain from this flexibility are reuse and configuration.

Everyone wants to reuse software. Perhaps this is the number-one goal of all software
engineering. Reuse is a bottom-line issue from both business and engineering perspectives.
Reuse means saving time, money, and maintainability. It makes everyone happy. And
achieving it is simple. We just need to isolate the logic that we want to reuse in a cleanly
separated unit. Once we’ve isolated the logic in an interceptor, we can drop it in anywhere we
like, easily applying it to whole classes of actions. This is more exciting than clean
architectural lines, but really it’s the same thing. We’ve already been benefiting from code
reuse by inheriting the defaultStack. Using the defaultStack allows us to reuse the data
transfer code written by the Struts 2 developers, along with their validation code, their
internationalization code, and so forth. In addition to the benefits of code reuse, the layering
power of interceptors gives us another important benefit. Once we have these tasks cleanly
encapsulated in interceptors, we can, in addition to reusing them, easily reconfigure their
order and number.

While the defaultStack provides a common set of interceptors, arranged in a
common sequence, to serve the common functional needs of most requests, we can rearrange
them to meet varying requirements. We can even remove and add interceptors as we like. We
can even do this on a per-action basis, but this is seldom necessary. In our Struts 2 Portfolio
application, we’ll develop an authentication interceptor and combine it with the defaul tStack
of interceptors that fires when the actions in our secure package are invoked. The flexible
nature of interceptors allows us to easily customize request processing for the specific needs
of certain requests, all while still taking advantage of code reuse.

Struts 2 is extremely flexible. This strength is what separates it from many of its
competitors. But, as we’ve mentioned, this can also be confusing when you first begin to use
the framework. Thankfully, Struts 2 provides a strong set of intelligent defaults that allow
developers to build most standard functionality without needing to think about the many ways
in which they can modify the framework and its core components. In the case of interceptors,
one of the framework’s most flexible components, the defaultStack should serve in the vast
majority of cases.

Developing interceptors

Despite their importance, many developers won’t write many interceptors. In fact,
most of the common tasks of the web application domain have already been written and
bundled into the struts-default package. Even if you never write an interceptor yourself,
it’s still important to understand what they are and how they do what they do.

If this chapter weren’t core to understanding the framework, we would’ve placed it at
the end of the book. We put this material here because we believe that understanding
interceptors is absolutely necessary to successfully leveraging the power of the framework.
First of all, you need to be familiar with the built-in interceptors, and you need to know how
to arrange them to your liking. Second, debugging the framework can truly be confusing if
you don’t understand how the requests are processed. We think that interceptors ultimately
provide a simpler architecture that can be more easily debugged and understood. However,
many developers may find them counterintuitive at first.

With that said, when you do find yourself writing your own custom interceptors,
you’ll truly begin to enjoy the Struts 2 framework. As you develop your actions, keep your
eyes out for any tasks that can be moved out to the interceptors. As soon as you do, you’ll be
hooked for life. But first, we should see how they actually work.

(to be continued)

Works Cited

BROWN, D., DAVIS, C. M., & STANLICK, S. (2008). Struts 2 in Action. Struts 2 in Action.
Bryan Basham, K. S. (2008). Head First Servlets and JSP (2nd edition). O’Reilly.

J2EE tutorial. (n.d.). Retrieved from http://docs.oracle.com/javaee/5/tutorial/doc/

Layka, V. (2014). Learn Java for Web Development. APress.

Williams, N. S. (2014). Professional Java for Web Applications. Wiley.

Danh muc tir khoa

Struts Interceptor

Interceptors are Struts 2 components that execute both before and after the rest of the
request processing. They provide an architectural component in which to define various
workflow and cross-cutting tasks so that they can be easily reused as well as separated from
other architectural concerns.

Struts ValueStack

Struts 2 uses the ValueStack as a storage area for all application domain data that will
be needed during the processing of a request. Data is moved to the ValueStack in preparation
for request processing, it is manipulated there during action execution, and it is read from
there when the results render their response pages.

OGNL

OGNL is a powerful expression language (and more) that is used to reference and
manipulate properties on the ValueStack.

	Chương 1. Tổng quan về Web tiến hóa với môi trường Java
	1.1 A Timeline of Java Platforms
	1.2 Java Servlet và JSP trong kiến trúc J2EE
	1.3 J2EE API (phiên bản 5)
	1.4 Máy chủ ứng dụng Java (Java Application Server)
	1.5 Cài đặt môi trường
	1.5.1 JDK / JRE
	1.5.2 Application Server Tomcat
	1.5.3 Eclipse

	Chương 2. Java Servlet
	2.1 Mô hình ứng dụng Web với Java Servlet
	2.2 Hello World Servlet Application
	2.2.1 Tạo project my_servet với Eclipse
	2.2.2 Đóng gói my_servlet
	2.2.3 Deploy my_servlet lên Tomcat server
	2.2.4 Phân tích kết quả chạy chương trình my_servlet

	2.3 Các kỹ thuật xử lý Servlet
	2.3.1 Servlet làm việc như thế nào
	2.3.1.1 The init() method
	2.3.1.2 The service() method
	2.3.1.3 The doGet(), doPost() method
	2.3.1.4 The destroy() method

	2.3.2 Servlet Container
	2.3.2.1 Container là gì
	2.3.2.2 Kết nối các phương thức Servlet và vai trò của Container

	2.3.3 Trao đổi dữ liệu với client
	2.3.3.1 Form Data
	2.3.3.2 Đọc thông tin trong client request
	2.3.3.3 Trả thông tin từ server về client
	2.3.3.4 Xử lý Cookie

	2.3.4 Quản lý phiên làm việc (session)
	2.3.5 Điều khiển luồng xử lý request
	2.3.5.1 Sử dụng RequestDispatcher
	2.3.5.2 Định hướng luồng tự động khi có lỗi
	2.3.5.3 Sử dụng bộ lọc (filter)

	2.3.6 Truy nhập cơ sở dữ liệu
	2.3.6.1 Chuẩn bị môi trường
	2.3.6.2 Servlet DatabaseAccess

	Chương 3. JSP
	3.1 Từ Servlet đến JSP
	3.1.1 Project my_jsp với Eclipse và Tomcat
	3.1.2 Servlet Hello_JSP
	3.1.3 Vòng đời hoạt động của JSP

	3.2 Xử giao diện với JSP
	3.2.1 JSP = HTML++
	3.2.2 Xử dụng Directives, Declarations, Scriptlets, and Expressions

	3.3 Truy nhập đến các đối tượng có sẵn (implicit objects)
	3.4 Custom Tag Library

	Chương 4. Struts - Java Web Framework
	4.1 Đặt vấn đề
	4.2 Model – View – Control (MVC) Framework
	4.3 Cấu hình môi trường
	4.4 Hello World với Struts
	4.4.1 Xây dựng giao diện với JSP:
	4.4.2 Kết nối các file giao diện theo logic của ứng dụng:
	4.4.3 Tạo Controller class HelloWorldAction

	4.5 Bên trong Struts
	4.5.1 Interceptors
	4.5.2 The ValueStack & OGNL
	4.5.3 Hello World làm việc thế nào

	4.6 Làm việc với Structs action
	4.6.1 What does an action do?
	4.6.2 Actions encapsulate the Unit Of Work
	4.6.3 Actions provide locus for data transfer
	4.6.4 Actions return control string for result routing

	4.7 Xử lý giao diện: UI Tags & Results
	4.7.1 Một số cấu trúc bên trong của Struts liên quan đến View
	4.7.1.1 The ActionContext and OGNL
	4.7.1.2 The ValueStack: a virtual object

	4.7.2 Struts UI tags
	4.7.3 Hiển thị Result lên View

	4.8 Làm việc với Interceptors
	4.8.1 Why intercept requests?

